

Gradle Effective
Implementation Guide

Empower yourself to automate your build

Hubert Klein Ikkink

 BIRMINGHAM - MUMBAI

Gradle Effective Implementation Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2012

Production Reference: 1181012

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84951-810-9

www.packtpub.com

Cover Image by Syarafuddin (syarafuddin@yahoo.com)

Credits

Author
Hubert Klein Ikkink

Reviewers
René Gröschke

Rajmahendra Hegde

Michał Huniewicz

James L. Williams

Acquisition Editor
Martin Bell

Lead Technical Editor
Sweny M. Sukumaran

Technical Editors
Dipesh Panchal

Unnati Shah

Dominic Pereira

Copy Editors
Brandt D’Mello

Insiya Morbiwala

Aditya Nair

Project Coordinator
Sai Gamare

Proofreader
Maria Gould

Clyde Jenkins

Mario Cecere

Indexer
Rekha Nair

Production Coordinator
Nitesh Thakur

Cover Work
Nitesh Thakur

About the Author

Hubert Klein Ikkink was born in 1973 and lives in Tilburg, the Netherlands,
with his beautiful wife and gorgeous children. He is also known as mrhaki, which
is simply the initials of his name prepended by mr. He studied Information Systems
and Management at the Tilburg University. After finishing his studies he started to
work at a company which specialized in knowledge-based software. There he started
writing his first Java software (yes, an applet!) in 1996. Over the years his focus
switched from applets, to servlets, to Java Enterprise Edition applications,
to Spring-based software.

In 2008 he wanted to have fun again when writing software. The larger projects
he was working on were more about writing configuration XML files, tuning
performance and less about real development in his eyes. So he started to look
around and noticed Groovy as a good language to learn about. He could still use
existing Java code, libraries, and his Groovy classes in Java. The learning curve isn’t
steep and to support his learning phase he wrote down interesting Groovy facts in
his blog with the title Groovy Goodness. He posts small articles with a lot of code
samples to understand how to use Groovy. Since November 2011 he is also a DZone
Most Valuable Blogger (MVB); DZone also posts his blog items on their site.

In 2010, 2011, and 2012 Hubert was invited to speak at Gr8Conf in Copenhagen,
Denmark. This is a very good conference with all the project leaders of Groovy and
Groovy-related projects. In November 2010 he presented a Gradle talk at the J-Fall
conference of the Dutch Java User Group. In November 2011 he presented about the
new features in Groovy 1.8 at the same conference. The conference is visited by 1000
Java developers and he got the chance to educate some of them about the greatness
of Gradle and Groovy.

Hubert works for a company called JDriven in the Netherlands. JDriven focuses
on technologies that simplify and improve development of enterprise applications.
Employees of JDriven have years of experience with Java and related technologies
and are all eager to learn about new technologies. Hubert works on projects using
Grails and Java combined with Groovy and Gradle.

Acknowledgement

It was a great honor to be asked by Packt Publishing to write this book. I knew
beforehand it would be a lot of work and somehow needed to be combined with
my daytime job. I couldn’t have written the book without the help of a lot of people
and I would like to thank them.

First of all I would like to thank my family for supporting me while writing this
book. They gave me space and time to write the book. Thank you for your patience
and a big kiss for Kim, Britt, and Liam; I love you. I also like to thank my colleagues
at JDriven. They reviewed the pages I wrote and helped me by asking questions and
showing interest in the progress of the book. Of course I like to thank all the people
at Gradleware for making Gradle such a great build tool and René Gröschke for
reviewing the chapters in the book.

Finally I’d like to thank the great staff at Packt Publishing. Sai Gamare kept me on
schedule and made sure everything was submitted on time. I’d also like to thank
all the editors for reviewing the book. They really helped me to keep focus and be
concise with the text.

About the Reviewers

René Gröschke has been working as a Software Engineer for more than
eight years now. He has worked on several international projects and regularly
shares his passion and experience of agile methodologies and software
craftsmanship with other developers at different national and international
conferences or with bachelor students of the Baden-Wuerttemberg Cooperative
State University (DHBW) in Germany.

Supporting Gradle and the Gradle community by providing plugins, patches,
screencasts, and talks since the early days, René has turned his hobby into his
occupation and is now part of the core developer team of Gradle working for
Gradleware. From time to time, he’s contributing to other open source projects,
such as Macports or Griffon.

Rajmahendra Hegde has been a Java Developer since 2000. He is currently
working for Logica as Project Lead/Architect. He is a User Group lead for Java
User Group – Chennai. He has contributed to JSRs and Scalaxia.com. He is the
committer for Visage. His primary areas of interest are JEE, JavaFX, JVM
Languages (Groovy, Scala, and Visage), NetBeans, and Gradle. You can
follow him at @rajonjava.

Michał Huniewicz is a Software Developer, with several years of experience in
the JVM technologies. He has been involved in projects for a variety of industries,
including banking, press, finance, telecoms, and the government. He was also the
head developer of an award-winning community portal. Apart from being an active
blogger (http://blog.m1key.me/), he is a passionate photographer and traveller.
He holds an M.Sc. degree in Computer Science from Adam Mickiewicz University.
Currently, he lives in London.

I would like to thank my parents, Rita and Andrzej, for their
continued support and for having faith in me.

James L. Williams is a developer based in Silicon Valley and a frequent
international conference speaker. He is the author of the book Learning HTML5 Game
Programming for Addison-Wesley. He blogs at http://jameswilliams.be/blog and
tweets as @ecspike.

www.PacktPub.com

Support files, eBooks, discount offers
and more
You might want to visit www.PacktPub.com for support files and downloads related
to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt’s online digital book
library. Here, you can access, read and search across Packt’s entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

http://www.PacktPub.com
http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
http://PacktLib.PacktPub.com
http://www.packtpub.com/

Table of Contents
Preface 1
Chapter 1: Starting with Gradle 7

Introducing Gradle 7
Declarative builds and convention over configuration 8
Support for Ant tasks and Maven repositories 8
Incremental builds 8
Multi-project builds 9
Gradle wrapper 9
Free and open source 9

Getting started 9
Installing Gradle 10

Writing our first build script 11
Default Gradle tasks 12
Task name abbreviation 15
Executing multiple tasks 16
Command-line options 17

Logging options 18
Changing the build file and directory 19
Running tasks without execution 20
Gradle daemon 20
Profiling 22

Understanding the Gradle user interface 22
Task Tree 24
Favorites 24
Command Line 25
Setup 25

Table of Contents

[ii]

Summary 27
Chapter 2: Creating Gradle Build Scripts 29

Writing a build script 29
Defining tasks 30

Defining actions with the Action interface 32
Build scripts are Groovy code 33
Defining dependencies between tasks 34

Defining dependencies via tasks 36
Defining dependencies via closures 36

Setting default tasks 37
Organizing tasks 38

Adding a description to tasks 40
Grouping tasks together 40

Adding tasks in other ways 41
Using task rules 43

Accessing tasks as project properties 44
Adding additional properties to tasks 45
Avoiding common pitfalls 45
Skipping tasks 46

Using onlyIf predicates 46
Skipping tasks by throwing StopExecutionException 48
Enabling and disabling tasks 49
Skipping from the command line 50
Skipping tasks that are up-to-date 51

Summary 54
Chapter 3: Working with Gradle Build Scripts 55

Working with files 55
Locating files 55
Using file collections 58
Working with file trees 62
Copying files 64

Renaming files 65
Filtering files 66

Archiving files 68
Project properties 70

Defining custom properties in script 71
Passing properties via the command line 72
Defining properties via system properties 73
Adding properties via environment variables 73
Defining properties using an external file 74

Table of Contents

[iii]

Using logging 75
Controlling output 80

Using the Gradle wrapper 82
Creating wrapper scripts 83
Customizing the Gradle wrapper 84

Summary 84
Chapter 4: Using Gradle for Java Projects 85

Using plugins 85
Getting started 86
Using the Java plugin 88
Working with source sets 92

Creating a new source set 95
Custom configuration 98

Working with properties 100
Creating documentation 104
Assembling archives 105
Summary 107

Chapter 5: Dependency Management 109
Dependency configuration 109
Repositories 112

Adding Maven repositories 113
Adding Ivy repositories 115
Adding a local directory repository 118

Defining dependencies 118
Using external module dependencies 119
Using project dependencies 124
Using file dependencies 124
Using client module dependencies 125
Using Gradle and Groovy dependencies 125
Accessing configuration dependencies 126
Setting dynamic versions 127
Resolving version conflicts 128
Adding optional ANT tasks 129
Using dependency configurations as files 130

Summary 131
Chapter 6: Testing, Building, and Publishing Artifacts 133

Testing 133
Using TestNG for testing 140
Configuring the test process 144
Determining tests 146

Table of Contents

[iv]

Logging test output 147
Generating test reports 149

Running Java applications 149
Running an application from a project 150
Running an application as task 151
Running an application with the application plugin 153
Creating a distributable application archive 154

Publishing artifacts 157
Uploading to a Maven repository 159
Multiple artifacts 162
Signing artifacts 163

Publishing signature files 165
Configuring conditional signing 167

Packaging Java Enterprise Edition applications 167
Creating a WAR file 167

Using the War plugin 169
Creating an EAR file 170

Using the Ear plugin 171
Summary 173

Chapter 7: Multi-project Builds 175
Working with multi-project builds 175

Executing tasks by project path 177
Using a flat layout 178
Defining projects 179
Filtering projects 182
Defining task dependencies between projects 184
Defining configuration dependencies 185

Working with Java multi-project builds 186
Using partial builds 191

Using the Jetty plugin 194
Summary 198

Chapter 8: Mixed Languages 199
Using the Groovy plugin 199

Creating documentation with the Groovy plugin 205
Using the Scala plugin 206

Creating documentation with the Scala plugin 211
Summary 212

Chapter 9: Maintaining Code Quality 213
Using the Checkstyle plugin 213
Using the PMD plugin 221
Using the FindBugs plugin 224

Table of Contents

[v]

Using the JDepend plugin 227
Using the CodeNarc plugin 229
Using the Sonar plugin 231
Summary 236

Chapter 10: Writing Custom Tasks and Plugins 237
Creating a custom task 237

Creating a custom task in the build file 238
Using incremental build support 240

Creating a task in the project source directory 243
Writing tests 246

Creating a task in a standalone project 247
Creating a custom plugin 249

Creating a plugin in the build file 250
Creating a plugin in the project source directory 252

Testing a plugin 254
Creating a plugin in a standalone project 255
Summary 258

Chapter 11: Using Gradle with Continuous Integration 259
Creating a sample project 259
Using Jenkins 264

Adding the Gradle plugin 265
Configuring Jenkins job 266
Running the job 270
Configuring artifacts and test results 272
Adding Gradle versions 275

Using JetBrains TeamCity 279
Creating a project 279
Running the project 286

Using Atlassian Bamboo 289
Defining a build plan 290
Running the build plan 298

Summary 306
Chapter 12: IDE Support 307

Using the Eclipse plugin 307
Customizing generated files 311

Customizing using DSL 312
Customizing with merge hooks 315
Customizing with XML manipulation 318

Merging configuration 319
Configuring WTP 319

Customizing file generation 323

Table of Contents

[vi]

Using the IntelliJ IDEA plugin 327
Customizing file generation 329

Customizing using DSL 329
Customizing with merged hooks 332
Customizing with XML manipulation 333

Running Gradle in Eclipse 335
Installing Gradle plugin 336
Importing Gradle project 338
Running tasks 343
Editing build files 346

Running Gradle in IntelliJ IDEA 346
Installing the plugin 347
Importing a project 348
Running tasks 355

Summary 356
Index 357

Preface
Gradle is the next-generation build automation. Not only does Gradle
use convention over configuration to provide good defaults, it is also adaptable for
use in every situation you encounter in daily development. Build logic is described
with a powerful DSL and empowers developers to create reusable and maintainable
build logic.

We will see more about Gradle in this book. We will learn about Gradle's features
with code samples throughout the book. We will learn how to write tasks, work
with files, and write build scripts using the Groovy DSL. Next, we will learn how
to use Gradle in projects to compile, package, test, check code quality and deploy
applications. And finally, we will see how to integrate Gradle with continuous
integration servers and development environments (IDEs).

After reading this book, we will know how to use Gradle in our daily
development. We can write tasks, apply plugins, and write build logic using
the Gradle build language.

What this book covers
Chapter 1, Starting with Gradle, introduces Gradle and explains how to install Gradle.
We will write our first Gradle script and learn about the command-line and GUI
features of Gradle.

Chapter 2, Creating Gradle Build Scripts, looks at tasks as part of the Gradle build
scripts. We will see how we can define tasks and use task dependencies to describe
build logic.

Chapter 3, Working with Gradle Build Scripts, covers more functionality that we can
apply in Gradle scripts. We will learn how to work with files and directories, apply
logging to our build scripts, and use properties to parameterize our build scripts.

Preface

[2]

Chapter 4, Using Gradle for Java Projects, is all about using the Java plugin for Gradle
projects. Gradle offers several tasks and configuration conventions that make
working with Java projects very easy. We will see how we can customize the
configuration for projects that cannot follow the conventions.

Chapter 5, Dependency Management, covers the support for dependencies by Gradle.
We will learn how to use configurations to organize dependencies. We will also
see how we can use repositories with dependencies in our build scripts.

Chapter 6, Testing, Building, and Publishing Artifacts, is an introduction to Gradle
support for running tests from the build script. We will learn how we can build
several artifacts for a project and publish the artifacts to a repository so other
developers can reuse our code.

Chapter 7, Multi-project Builds, covers Gradle's support for multi-project builds.
With Gradle, we can easily configure multiple projects that are related to each
other. We will also see how Gradle can automatically build related or dependent
projects if necessary.

Chapter 8, Mixed Languages, is about the Scala and Groovy plugins that are included
with Gradle, to work with projects that have Scala or Groovy code.

Chapter 9, Maintaining Code Quality, introduces Gradle's code quality plugins. We
will see how we can use and configure the plugins to include code analysis in
our build process.

Chapter 10, Writing Custom Tasks and Plugins, covers what we need to do to write our
own custom tasks and plugins. We will see how we can decouple the definition and
usage of a custom task and plugin into separate source files. We will also learn how
we can reuse our custom tasks and plugins in other projects

Chapter 11, Using Gradle with Continuous Integration, is an introduction to the support of
several continuous integration tools for Gradle. We will learn how we can configure a
continuous integration server to automatically invoke our Gradle build scripts.

Chapter 12, IDE Support, looks at how Gradle can generate project files for Eclipse and
IntelliJ IDEA. We will also see how the IDEs support Gradle from within the IDE to
run (for example) tasks, and keep track of dependencies defined in Gradle scripts.

Preface

[3]

What you need for this book
In order to work with Gradle and the code samples in the book, we need at least a
Java Development Kit (JDK 1.5 or higher), Gradle, and a good text editor. In Chapter
1, Starting with Gradle, we will see how we can install Gradle on our computer.

Who this book is for
This book is for you if you work on Java (Scala or Groovy) applications and
want to use build automation to compile, package, and deploy your application
automatically. You might have worked with other build automation tools such as
Maven or ANT, but this is not necessary to understand the topics in this book.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "In our first build we only have one
task, so the command gradle h should work just fine."

A block of code is set as follows:

task helloWorld << {
 println 'Hello world.'
}

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items are set in bold:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

sourceSets {
 api
}

task apiJar(type: Jar) {
 appendix = 'api'
 from sourceSets.api.output
}

Preface

[4]

Any command-line input or output is written as follows:

hello-world $ gradle helloWorld

:helloWorld

Hello world.

BUILD SUCCESSFUL

Total time: 2.047 secs

New terms and important words are shown in bold. Words that you see on
the screen, in menus or dialog boxes for example, appear in the text like this:
"We select the plugin and click on the button Install without restart".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a
note in the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@
packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.PacktPub.com. If you purchased this book
elsewhere, you can visit http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and
entering the details of your errata. Once your errata are verified, your submission
will be accepted and the errata will be uploaded on our website, or added to any list
of existing errata, under the Errata section of that title. Any existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
any aspect of the book, and we will do our best to address it.

http://www.PacktPub.com
http://www.PacktPub.com/support
mailto:copyright@packtpub.com

Starting with Gradle
When we develop software, we write code, compile code, test our code, package our
code, and finally, distribute the code. We can automate these steps by using a build
system. The big advantage is that we have a repeatable sequence of steps. Each time,
the build system will follow the steps we have defined, so we can concentrate on
writing the actual code and not worry about the other steps.

Gradle is such a build system. In this chapter, we will explain what Gradle is and
how to use it in our development projects.

Introducing Gradle
Gradle is a tool for build automation. With Gradle, we can automate the compiling,
testing, packaging, and deployment of our software or other types of projects. Gradle
is flexible but has sensible defaults for most projects. This means we can rely on the
defaults, if we don't want something special, but can still use the flexibility to adapt
a build to certain custom needs.

Gradle is already used by big open source projects, such as Spring, Hibernate, and
Grails. Enterprise companies such as LinkedIn also use Gradle.

Let's take a look at some of Gradle's features.

Starting with Gradle

[8]

Declarative builds and convention over
configuration
Gradle uses a Domain Specific Language (DSL) based on Groovy to declare builds.
The DSL provides a flexible language that can be extended by us. Because the DSL
is based on Groovy, we can write Groovy code to describe a build and use the
power and expressiveness of the Groovy language. Groovy is a language for the
Java Virtual Machine (JVM), such as Java and Scala. Groovy makes it easy to work
with collections, has closures, and has a lot of useful features. The syntax is closely
related to the Java syntax. In fact, we could write a Groovy class file with Java syntax
and it would compile. But, using the Groovy syntax makes it easier to express the
code intent, and we need less boilerplate code than with Java. To get the most out of
Gradle, it is best to learn the basics of the Groovy language, but it is not necessary
to start writing Gradle scripts.

Gradle is designed to be a build language and not a rigid framework. The Gradle
core itself is written in Java and Groovy. To extend Gradle we can use Java and
Groovy to write our custom code. We can even write our custom code in Scala if
we want to.

Gradle provides support for Java, Groovy, Scala, Web, and OSGi projects, out of
the box. These projects have sensible convention over configuration settings that
we probably already use ourselves. But we have the flexibility to change these
configuration settings, if needed, in our projects.

Support for Ant tasks and Maven repositories
Gradle supports Ant tasks and projects. We can import an Ant build and re-use all
the tasks. But we can also write Gradle tasks dependent on Ant tasks. The integration
also applies to properties, paths, and so on.

Maven and Ivy repositories are supported to publish or fetch dependencies.
So, we can continue to use any repository infrastructure we already have.

Incremental builds
With Gradle we have incremental builds. This means tasks in a build are only
executed if necessary. For example, a task to compile source code will first check
whether the sources since the last execution of the task have changed. If the sources
have changed, the task is executed, but if the sources haven't changed, the execution
of the task is skipped and the task is marked as being up to date.

Gradle supports this mechanism for a lot of the provided tasks. But we can also
use this for tasks we write ourselves.

Chapter 1

[9]

Multi-project builds
Gradle has great support for multi-project builds. A project can simply be dependent
on other projects or be a dependency for other projects. We can define a graph of
dependencies between projects, and Gradle can resolve those dependencies for us.
We have the flexibility to define our project layout as we want.

Gradle has support for partial builds. This means Gradle will figure out if a project
that our project depends on needs to be rebuilt or not. And if the project needs
rebuilding, Gradle will do this before building our own project.

Gradle wrapper
The Gradle wrapper allows us to execute Gradle builds, even though Gradle is not
installed on a computer. This is a great way to distribute source code and provide
the build system with it, so that the source code can be built.

Also, in an enterprise environment, we can have a zero administration way for client
computers to build the software. We can use the wrapper to enforce a certain Gradle
version to be used, so the whole team is using the same version.

Free and open source
Gradle is an open source project and it is licensed under the Apache Software
License (ASL).

Getting started
In this section, we will download and install Gradle before writing our first Gradle
build script.

Before we get and install Gradle, we must make sure we have a Java Development
Kit (JDK) installed on our computer. Gradle requires JDK 5 or higher. Gradle will
use the JDK found at the path set on our computer. We can check this by running
the following command on the command line:

java -version

Although Gradle uses Groovy, we don't have to install Groovy ourselves. Gradle
bundles the Groovy libraries with the distribution and will ignore a Groovy
installation already available on our computer.

Starting with Gradle

[10]

Gradle is available on the Gradle website, at http://www.gradle.org/downloads.
From this page we can download the latest release of Gradle. Or, we can download
a previous version if we want to. We can choose among three different distributions
to download. We can download either the complete Gradle distribution, with
binaries, sources, and documentation, or only the binaries, or only the sources.

To get started with Gradle, we download the standard distribution with the binaries,
sources, and documentation. At the time of writing this book, the current release is
1.1. On computers with a Debian Linux operation sytem, we can install Gradle as a
Debian package. On computers with Mac OS X, we can use MacPorts or Homebrow
to install Gradle.

Installing Gradle
Gradle is packaged as a ZIP file for one of the three distributions. So, when we
have downloaded the Gradle full distribution ZIP file, we must unzip the file.
After unpacking the ZIP file we have the following:

• Binaries in the bin directory
• Documentation with the user guide, Groovy DSL, and the API

documentation in the docs directory
• A lot of samples in the samples directory
• Source code for Gradle in the src directory
• Supporting libraries for Gradle in the lib directory
• A directory named init.d where we can store Gradle scripts that

need to be executed each time we run Gradle

Once we have unpacked the Gradle distribution to a directory, we can open a
command prompt. We change the directory to bin, which we extracted from the
ZIP file. To check our installation, we run gradle -v and we get output, listing
the JDK used and the library versions of Gradle:

$ gradle -v

--

Gradle 1.1

--

Gradle build time: Tuesday, July 31, 2012 1:24:32 PM UTC

Groovy: 1.8.6

http://www.gradle.org/downloads

Chapter 1

[11]

Ant: Apache Ant(TM) version 1.8.4 compiled on May 22 2012

Ivy: 2.2.0

JVM: 1.6.0_33 (Apple Inc. 20.8-b03-424)

OS: Mac OS X 10.7.4 x86_64

Here we can check whether the displayed version is the same as the distribution
version we have downloaded from the Gradle website.

To run Gradle on our computer we only have to add $GRADLE_HOME/bin to our
PATH environment variable. Once we have done that, we can run the gradle
command from every directory on our computer.

If we want to add JVM options to Gradle, we can use the environment variables
JAVA_OPTS and GRADLE_OPTS. The former is a commonly used environment
variable name to pass extra parameters to a Java application. Similarly, Gradle
uses the GRADLE_OPTS environment variable to pass extra arguments to Gradle.
Both environment variables are used so we can set them both with different values.
This is mostly used to set, for example, an HTTP proxy or extra memory options.

Writing our first build script
We now have a running Gradle installation. It is time to create our first Gradle build
script. Gradle uses the concept of projects to define a related set of tasks. A Gradle
build can have one or more projects. A project is a very broad concept in Gradle, but
it is mostly a set of components we want to build for our application.

A project has one or more tasks. Tasks are a unit of work that need to be executed
by the build. Examples of tasks are compiling source code, packaging class files
into a JAR file, running tests, or deploying the application.

We now know that a task is part of a project, so to create our first task we also
create our first Gradle project. We use the gradle command to run a build. Gradle
will look for a file named build.gradle in the current directory. This file is the build
script for our project. We define those of our tasks that need to be executed in this
build script file.

We create a new file, build.gradle, and open it in a text editor. We type the
following code to define our first Gradle task:

task helloWorld << {
 println 'Hello world.'
}

Starting with Gradle

[12]

With this code we define a helloWorld task. The task will print the words "Hello
world." to the console. println is a Groovy method to print text to the console
and is basically a shorthand version of the Java method System.out.println.

The code between the brackets is a closure. A closure is a code block that can be
assigned to a variable or passed to a method. Java doesn't support closures, but
Groovy does. And because Gradle uses Groovy to define the build scripts, we
can use closures in our build scripts.

The << syntax is, technically speaking, operator shorthand for the method
leftShift(), which actually means "add to". So, we are defining here that we
want to add the closure (with the statement println 'Hello world.') to our
task with the name helloWorld.

First we save build.gradle, and then with the command gradle helloWorld,
we execute our build:

hello-world $ gradle helloWorld

:helloWorld

Hello world.

BUILD SUCCESSFUL

Total time: 2.047 secs

The first line of output shows our line Hello world. Gradle adds some more output,
such as the fact that the build was successful and the total time of the build. Because
Gradle runs in the JVM, it must be started each time we run a Gradle build.

We can run the same build again, but with only the output of our task, by using
the Gradle command-line option --quiet (or -q). Gradle will suppress all messages
except error messages. When we use --quiet (or -q), we get the following output:

hello-world $ gradle --quiet helloWorld

Hello world.

Default Gradle tasks
We created our simple build script with one task. We can ask Gradle to show us
the available tasks for our project. Gradle has several built-in tasks we can execute.
We type gradle -q tasks to see the tasks for our project:

Chapter 1

[13]

hello-world $gradle -q tasks

All tasks runnable from root project

Help tasks

dependencies - Displays the dependencies of root project 'hello-world'.

help - Displays a help message

projects - Displays the sub-projects of root project 'hello-world'.

properties - Displays the properties of root project 'hello-world'.

tasks - Displays the tasks runnable from root project 'hello-world'
(some of the displayed tasks may belong to subprojects).

Other tasks

helloWorld

To see all tasks and more detail, run with --all.

Here, we see our task helloWorld in the Other tasks section. The Gradle built-in
tasks are displayed in the Help tasks section. For example, to see some general help
information, we execute the help task:

hello-world $ gradle -q help

Welcome to Gradle 1.1.

To run a build, run gradle <task> ...

To see a list of available tasks, run gradle tasks

To see a list of command-line options, run gradle --help

Starting with Gradle

[14]

The properties task is very useful to see the properties available to our project.
We haven't defined any property ourselves in the build script, but Gradle provides
a lot of built-in properties. The following output shows some of the properties:

hello-world $ gradle -q properties

Root project

additionalProperties: {}

allprojects: [root project 'hello-world']

ant: org.gradle.api.internal.project.DefaultAntBuilder@6af37a62

antBuilderFactory: org.gradle.api.internal.project.DefaultAntBuilderFacto
ry@16e7eec9

artifacts: org.gradle.api.internal.artifacts.dsl.
DefaultArtifactHandler@54edd9de

asDynamicObject: org.gradle.api.internal.DynamicObjectHelper@4b7aa961

buildDir: /Users/mrhaki/Projects/gradle-book/samples/chapter1/hello-
world/build

buildDirName: build

buildFile: /Users/mrhaki/Projects/gradle-book/samples/chapter1/hello-
world/build.gradle

...

The dependencies task will show dependencies (if any) for our project. Our first
project doesn't have any dependencies when we run the task, as the output shows:

hello-world $ gradle -q dependencies

Root project

No configurations

Chapter 1

[15]

The projects task will display sub-projects (if any) for a root project. Our project
doesn't have any sub-projects. So when we run the task projects, the output
shows us that our project has no sub-projects.

hello-world $ gradle -q projects

Root project

Root project 'hello-world'

No sub-projects

To see a list of the tasks of a project, run gradle <project-path>:tasks

For example, try running gradle :tasks

Task name abbreviation
Before we look at more Gradle command-line options, it is good to learn about a real
timesaving feature of Gradle: task name abbreviation. With task name abbreviation,
we don't have to type the complete task name on the command line. We only have
to type enough of the name to make it unique within the build.

In our first build we only have one task, so the command gradle h should work
just fine. But then, we didn't take into account the built-in task help. So, to uniquely
identify our helloWorld task, we use the abbreviation hello:

hello-world $ gradle -q hello

Hello world.

We can also abbreviate each word in a camel case task name. For example, our
task name helloWorld can be abbreviated to hW:

hello-world $gradle -q hW

HelloWorld

This feature saves us the time spent in typing the complete task name and can
speed up the execution of our tasks.

Starting with Gradle

[16]

Executing multiple tasks
With just a simple build script, we already learned that we have a couple of default
tasks besides our own task that we can execute. To execute multiple tasks we only
have to add each task name to the command line. Let's execute our custom task
helloWorld and the built-in task tasks, as follows:

hello-world $ gradle helloWorld tasks

:helloWorld

Hello world.

:tasks

All tasks runnable from root project

Help tasks

dependencies - Displays the dependencies of root project 'hello-world'.

help - Displays a help message

projects - Displays the sub-projects of root project 'hello-world'.

properties - Displays the properties of root project 'hello-world'.

tasks - Displays the tasks runnable from root project 'hello-world'
(some of the displayed tasks may belong to subprojects).

Other tasks

helloWorld

To see all tasks and more detail, run with --all.

BUILD SUCCESSFUL

Total time: 1.718 secs

We see the output of both the tasks. First, helloWorld is executed, followed
by tasks. When executed, we see the task names prepended with a colon (:)
and the output on the following lines.

Chapter 1

[17]

Gradle executes the tasks in the same order as they are defined on the command line.
Gradle will execute a task only once during the build. So even if we define the same
task multiple times, it will be executed only once. This rule also applies when tasks
have dependencies on other tasks. Gradle will optimize the task execution for us,
and we don't have to worry about that.

Command-line options
The gradle command is used to execute a build. This command accepts several
command-line options. We know the option --quiet (or -q) to reduce the output of
a build. If we use the option --help (or -h or -?), we see the complete list of options:

hello-world $ gradle --help

USAGE: gradle [option...] [task...]

-?, -h, --help Shows this help message.

-a, --no-rebuild Do not rebuild project dependencies.

-b, --build-file Specifies the build file.

-C, --cache Specifies how compiled build scripts should be
cached. Possible values are: 'rebuild' and 'on'. Default value is 'on'
[deprecated - Use '--rerun-tasks' or '--recompile-scripts' instead]

-c, --settings-file Specifies the settings file.

--continue Continues task execution after a task failure.
[experimental]

-D, --system-prop Set system property of the JVM (e.g.
-Dmyprop=myvalue).

-d, --debug Log in debug mode (includes normal stacktrace).

--daemon Uses the Gradle daemon to run the build. Starts
the daemon if not running.

--foreground Starts the Gradle daemon in the foreground.
[experimental]

-g, --gradle-user-home Specifies the gradle user home directory.

--gui Launches the Gradle GUI.

-I, --init-script Specifies an initialization script.

-i, --info Set log level to info.

-m, --dry-run Runs the builds with all task actions disabled.

--no-color Do not use color in the console output.

--no-daemon Do not use the Gradle daemon to run the build.

Starting with Gradle

[18]

--no-opt Ignore any task optimization. [deprecated - Use
'--rerun-tasks' instead]

--offline The build should operate without accessing
network resources.

-P, --project-prop Set project property for the build script (e.g.
-Pmyprop=myvalue).

-p, --project-dir Specifies the start directory for Gradle.
Defaults to current directory.

--profile Profiles build execution time and generates a
report in the <build_dir>/reports/profile directory.

--project-cache-dir Specifies the project-specific cache directory.
Defaults to .gradle in the root project directory.

-q, --quiet Log errors only.

--recompile-scripts Force build script recompiling.

--refresh Refresh the state of resources of the type(s)
specified. Currently only 'dependencies' is supported. [deprecated - Use
'--refresh-dependencies' instead.]

--refresh-dependencies Refresh the state of dependencies.

--rerun-tasks Ignore previously cached task results.

-S, --full-stacktrace Print out the full (very verbose) stacktrace for
all exceptions.

-s, --stacktrace Print out the stacktrace for all exceptions.

--stop Stops the Gradle daemon if it is running.

-u, --no-search-upward Don't search in parent folders for a settings.
gradle file.

-v, --version Print version info.

-x, --exclude-task Specify a task to be excluded from execution.

Logging options
Let's look at some of the options in more detail. The options --quiet (or -q),
--debug (or -d), --info (or -i), --stacktrace (or -s), and --full-stacktrace
(or -S) control the amount of output we see when we execute tasks. To get the
most detailed output we use the option --debug (or -d). This option provides
a lot of output with information about the steps and classes used to run the
build. The output is very verbose, therefore we will not use it much.

To get a better insight into the steps that are executed for our task, we can use the
--info (or -i) option. The output is not as verbose as with --debug, but it can give
a better understanding of the build steps:

Chapter 1

[19]

hello-world $ gradle --info helloWorld

Starting Build

Settings evaluated using empty settings file.

Projects loaded. Root project using build file '/Users/gradle/hello-
world/build.gradle'.

Included projects: [root project 'hello-world']

Evaluating root project 'hello-world' using build file '/Users/gradle/
hello-world/build.gradle'.

All projects evaluated.

Selected primary task 'helloWorld'

Tasks to be executed: [task ':helloWorld']

:helloWorld

Task ':helloWorld' has not declared any outputs, assuming that it is
out-of-date.

Hello world.

BUILD SUCCESSFUL

Total time: 1.535 secs

If our build throws exceptions, we can see the stack trace information with the
options --stacktrace (or -s) and --full-stacktrace (or -S). The latter option
will output the most information and is the most verbose. The options --stacktrace
and --full-stracktrace can be combined with the other logging options.

Changing the build file and directory
We created our build file with the name build.gradle. This is the default name
for a build file. Gradle will look for a file with this name in the current directory,
to execute the build. But we can change this with the command-line options
--build-file (or -b) and --project-dir (or -p).

Let's run the Gradle command from the parent directory of our current directory:

hello-world $ cd ..

$ gradle --project-dir hello-world -q helloWorld

Hello world.

Starting with Gradle

[20]

And we can also rename build.gradle to, for example, hello.build and still
execute our build:

hello-world $ mv build.gradle hello.build

hello-world $ gradle --build-file -q helloWorld

Hello world.

Running tasks without execution
With the option --dry-run (or -m), we can run all the tasks without really executing
them. When we use the dry run option, we can see which tasks are executed, so we
get an insight into which tasks are involved in a certain build scenario. And we don't
have to worry if the tasks are actually executed. Gradle builds up a Directed Acyclic
Graph (DAG) with all the tasks before any task is executed. The DAG is built so that
tasks will be executed in order of dependencies and so that a task is executed only
once.

hello-world $ gradle --dry-run helloWorld

:helloWorld SKIPPED

BUILD SUCCESSFUL

Total time: 1.437 secs

Gradle daemon
We already learned that Gradle is executed in a Java Virtual Machine, and each time
we invoke the gradle command, a new Java Virtual Machine is started, the Gradle
classes and libraries are loaded, and the build is executed. We can reduce the build
execution time if we don't have to load a JVM, Gradle classes, and libraries, each time
we execute a build. The command-line option, --daemon, starts a new Java process
that will have all Gradle classes and libraries already loaded, and then we execute
the build. The next time when we run Gradle with the --daemon option, only the
build is executed, because the JVM, with the required Gradle classes and libraries,
is already running.

The first time we execute gradle with the --daemon option, the execution speed
will not improve, because the Java background process has not started as yet.
But the next time around, we will see a major improvement:

hello-world $ gradle --daemon helloWorld

:helloWorld

Chapter 1

[21]

Hello world.

BUILD SUCCESSFUL

Total time: 0.59 secs

Even though the daemon process has started, we can still run Gradle tasks without
using the daemon. We use the command-line option --no-daemon to run a Gradle
build without utilizing the daemon:

hello-world $ gradle --no-daemon helloWorld

:helloWorld

Hello world.

BUILD SUCCESSFUL

Total time: 1.496 secs

To stop the daemon process, we use the command-line option --stop:

$ gradle --stop

Stopping daemon.

Gradle daemon stopped.

This will stop the Java background process completely.

To always use the --daemon command-line option, without typing it every time we
run the gradle command, we can create an alias—if our operating system supports
aliases. For example, on a Unix-based system we can create an alias and then use the
alias to run the Gradle build:

hello-world $ alias gradled='gradle --daemon'

hello-world $ gradled helloWorld

:helloWorld

Hello world.

BUILD SUCCESSFUL

Total time: 0.59 secs Instead

Starting with Gradle

[22]

Instead of using the --daemon command-line option, we can use the Java system
property org.gradle.daemon to enable the daemon. We can add this property
to environment variable GRADLE_OPTS, so that it is always used when we run
a Gradle build.

hello-world $ export GRADLE_OPTS="-Dorg.gradle.daemon=true"

hello-world $ gradle helloWorld

:helloWorld

Hello world.

BUILD SUCCESSFUL

Total time: 0.707 secs

Profiling
Gradle also provides the command-line option --profile. This option records
the time that certain tasks take to complete. The data is saved in an HTML file in
the directory build/reports/profile. We can open this file in a web browser
and see the time taken for several phases in the build process. The following
image shows the HTML contents of the profile report:

Understanding the Gradle user interface
Finally, we take a look at the --gui command-line option. With this option, we start
a graphical shell for our Gradle builds. Until now, we have used the command line
to start a task. With the Gradle GUI, we have a graphical overview of the tasks in
a project, and we can execute them by simply double-clicking on them.

Chapter 1

[23]

To start the GUI, we invoke the following command:

hello-world $ gradle --gui

A window is opened with a graphical overview of our task tree. We have only
one task, which is listed in the task tree, as shown in the following screenshot:

Starting with Gradle

[24]

The output of a running task is shown in the bottom part of the window. When we
start the GUI for the first time, the tasks task is executed and we see the output in
the window.

Task Tree
The Task Tree tab shows projects and tasks found in our build project. We can
execute a task by double-clicking on the task name.

By default all tasks are shown, but we can apply a filter to show or hide certain
projects and tasks. The Filter button opens a new dialog window where we can
define which tasks and properties are part of the filter. The Toggle filter button
makes the filter active or inactive.

We can also right-click on the project and task names. This opens a context menu
where we can choose whether to execute the task, add it to the favorites, hide it
(adds it to the filter), or edit the build file. If we click on Edit File, and if the .gradle
extension is associated with a text editor in our operating system, the editor is opened
with the content of the build script. These options can be seen in
the following screenshot:

Favorites
The Favorites tab stores tasks we want to execute regularly. We can add a task by
right-clicking on the task in the Task Tree tab and selecting the Add To Favorites
menu option. Alternatively, we can open the Favorites tab, click on the Add button
and manually enter the project and task name we want to add to our favorites list.
We can see the Add Favorite dialog window in the following screenshot:

Chapter 1

[25]

Command Line
On the Command Line tab, we can enter any Gradle command we normally would
enter on the command prompt. The command can be added to Favorites as well.
We can see the Command Line tab contents in the following screenshot:

Setup
The last tab is the Setup tab. Here, we can change the project directory, which is set
by default to the current directory.

Starting with Gradle

[26]

We learned about the different logging levels as command-line options previously
in this chapter. In the GUI, we can select the logging level from the Log Level
drop-down box with the different log levels. We can choose one of Debug, Info,
Lifecyle, and Error as the log levels. The Error log level only shows errors and is
the least verbose, while Debug is the most verbose log level. The Lifecyle log level
is the default log level.

Here we can also set how detailed the exception stack trace information should
be. In the section Stack Trace Output we can choose between the following
three options:

• Exceptions only: For showing only exceptions when they occur; this is
the default value

• Standard Stack Trace: For showing more stack trace information for
the exceptions

• Full Stack Trace: For the most verbose stack trace information for exceptions

If we enable the option Only Show Output When Errors Occur, we get output
from the build process only if the build fails; otherwise we don't get any output.

Finally, we can define a different way to start Gradle for the build, with the option
Use Custom Gradle Executor. For example, we can define a different batch or script
file with extra setup information to run the build process. The following screenshot
shows the Setup tab page along with all the options we can set:

Chapter 1

[27]

Summary
So now, we have learned how to install Gradle on our computers. We have written
our first Gradle build script with a simple task.

We have seen how to use the tasks built-in to Gradle to get more information about
a project. We learned how to use the command-line options to help us run the build
scripts. And, we have looked at the Gradle graphical user interface and how we can
use it to run Gradle build scripts.

In the next chapter we will take a further look at tasks. We will learn how to add
actions to a task. We will write more complex tasks where tasks will depend on
other tasks. And we will learn how Gradle builds up a task graph internally and
how we can use this in our projects.

Creating Gradle Build Scripts
In Gradle, projects and tasks are two important concepts. A Gradle build always
consists of one or more projects. A project defines some sort of component we
want to build. There are no defining rules about what the component is. It can be
a JAR file with utility classes to be used in other projects, or a web application to
be deployed to the corporate intranet. A project doesn't have to be about building
and packaging code; it can also be about doing things such as copying files to a
remote server or deployment of applications to servers.

A project has one or more tasks. A task is a small piece of work that is executed
when we run a build, for example, compiling source code, packaging code in an
archive file, generating documentation, and so on.

In this chapter we will learn how to define a project with tasks and use it as a
Gradle build.

Writing a build script
In the first chapter we have already written our first build script. Let's create a
similar build script with a simple task. Gradle will look for a file with the name
build.gradle, in the current directory. The file build.gradle contains the tasks
that make up our project. In this example, we define a simple task that prints out
a simple message to the console:

project.description = 'Simple project'

task simple << {
 println 'Running simple task for project ' + project.description
}

Creating Gradle Build Scripts

[30]

If we run the build we see the following output in the console:

$ gradle simple

:simple

Running simple task for project Simple project

BUILD SUCCESSFUL

Total time: 2.08 secs

A couple of interesting things happen with this small build script. Gradle reads
the script file and creates a Project object. The build script configures the Project
object, and finally the set of tasks to be executed is determined and executed.

So, it is important to note that Gradle creates a Project object for us. The Project
object has several properties and methods, and it is available in our build scripts.
We can use the variable name project to reference the Project object, but we
can also leave out this variable name to reference properties and methods of the
Project object. Gradle will automatically try to map properties and methods in
the build script to the Project object.

In our simple build script we assign the value Simple project to the project
property description. We used the explicit project variable name and the
Groovy property assignment syntax. The following build script uses a
different syntax to get the same result:

setDescription("Simple project")

task simple << {
 println 'Running simple task for project ' + project.
getDescription()
}

Here, we use the Java syntax to set and get the value of the description property
of the project object. We are very flexible in our syntax, but we will stick with
the Groovy syntax for the rest of the book, because it results in more readable
build scripts.

Defining tasks
A project has one or more tasks to execute some actions, so a task is made up of
actions. These actions are executed when the task is executed. Gradle supports
several ways to add actions to our tasks.

Chapter 2

[31]

We can use the doFirst and doLast methods to add actions to our task, and we can
use the left shift operator (<<) as a synonym for the doLast method. With the doLast
method or the left shift operator (<<) we add actions at the end of the list of actions
for the task. With the doFirst method we can add actions to the beginning of the
list of actions. The following script shows how we can use the several methods:

task first {
 doFirst {
 println 'Running first'
 }
}

task second {
 doLast { Task task ->
 println "Running ${task.name}"
 }
}

task third << { taskObject ->
 println 'Running ' + taskObject.name
}

When we run the script, we get the following output:

$ gradle first second third

:first

Running first

:second

Running second

:third

Running third

BUILD SUCCESSFUL

Total time: 2.13 secs

For the task second, we add the action to print out text with the doLast method.
The method accepts a closure as an argument. The task object is passed to the
closure as a parameter. This means we can use the task object in our actions.
In the sample build file, we get the value for the name property of the task
and print it to the console.

Creating Gradle Build Scripts

[32]

Maybe it is a good time to look more closely at closures, because they are an important
part of Groovy and are used throughout Gradle build scripts. Closures are basically
reusable pieces of code that can be assigned to a variable or passed to a method. A
closure is defined by enclosing the piece of code between curly brackets ({...}). We
can pass one or more parameters to closures. If the closure has only one argument, an
implicit parameter, it, can be used to reference the parameter value. We could have
written the second task as follows, and the result would still be the same:

task second {
 doLast {
 // Using implicit 'it' closure parameter
 println "Running ${it.name}"
 }
}

We can also define a name for the parameter and use that name in the code. This
is what we did for the tasks second and third, wherein we named the closure
parameter task and taskObject respectively. The resulting code is more readable
if we define the parameter name explicitly in our closure:

task second {
 doLast { Task task ->
 // Using explicit name 'task' as closure parameter
 println "Running ${task.name}"
 }
}

Defining actions with the Action interface
Gradle often has more than one way of defining something, as we will see
throughout the book. Besides using closures to add actions to a task, we can
also use a more verbose way by passing an implementation class of the org.
gradle.api.Action interface. The Action interface has one method: execute.
This method is invoked when the task is executed. The following piece of code
shows a reimplementation of the first task in our build script:

task first {
 doFirst(
 new Action() {
 void execute(task) {
 println "Running ${task.name}"
 }
 }
)
}

Chapter 2

[33]

It is good to know that we have choices when we define actions for a task, but the
closure syntax is denser and more readable.

Build scripts are Groovy code
We must keep in mind that Gradle scripts use Groovy. This means we can use all the
Groovy's good stuff in our scripts. We already saw in our sample script the use of the
so-called Groovy GString. The GString is defined as a string with double quotes
and can contain references to variables defined in a ${...} section. The variabled
reference is resolved when we get the value of the GString.

But other great Groovy constructs can also be used in Gradle scripts. The following
sample script shows some of these constructs:

task numbers << {
 (1..4).each { number ->
 def squared = number * number
 println "Square of ${number} = ${squared}"
 }
}

task list {
 doFirst {
 def list = ['Groovy', 'Gradle']
 println list.collect { it[0].toLowerCase() }.join('&')
 }
}

And when we run the script we get the following output:

$ gradle -q numbers list

:numbers

Square of 1 = 1

Square of 2 = 4

Square of 3 = 9

Square of 4 = 16

:list

g&g

BUILD SUCCESSFUL

Total time: 2.129 secs

Creating Gradle Build Scripts

[34]

Defining dependencies between tasks
Until now, we have defined tasks independent of each other. But in our projects
we need dependencies between tasks. For example, a task to package compiled
class files is dependent on the task to compile the class files. The build system
should then first run the compile task, and when the task is finished, the package
task must be executed.

In Gradle, we can add task dependencies with the dependsOn method for a task.
First, let's look at a simple task dependency:

task first << { task ->
 println "Run ${task.name}"
}

task second << { task ->
 println "Run ${task.name}"
}

// Define dependency of task second on task first
second.dependsOn 'first'

Note that we define the dependency of task second on task first, in the last
line. When we run the script, we see that the first task is executed before the
second task:

$ gradle second

:first

Run first

:second

Run second

BUILD SUCCESSFUL

Total time: 2.145 secs

Another way to define the dependency between tasks is to set the dependsOn
property instead of using the dependsOn method. There is a subtle difference;
Gradle just offers several ways to achieve the same result. In the following piece
of code, we use the property to define the dependency of task second. And for
task third, we immediately define the property when we define the task:

Chapter 2

[35]

task first << { task ->
 println "Run ${task.name}"
}

task second << { task ->
 println "Run ${task.name}"
}

// Use property syntax to define dependency.
// dependsOn expects a collection object.
second.dependsOn = ['first']

// Define dependsOn when we create the task:
task third(dependsOn: 'second') << { task ->
 println "Run ${task.name}"
}

When we run task third on the command line, we see that all three tasks
are executed:

$ gradle -q third

Run first

Run second

Run third

The dependency between tasks is "lazy". We can define a dependency on a task that
is defined later in the build script. Gradle will set up all task dependencies during the
configuration phase and not during the execution phase. The following script shows
that the order of the tasks doesn't matter in the build script:

task third(dependsOn: 'second') << { task ->
 println "Run ${task.name}"
}

task second(dependsOn: 'first') << { task ->
 println "Run ${task.name}"
}

task first << { task ->
 println "Run ${task.name}"
}

Creating Gradle Build Scripts

[36]

We now have our build script with three tasks. But each task does the same thing—it
prints out a string with the name of the task. It is good to keep in mind that our build
script is just code, and code can be organized and refactored to create cleaner code.
This applies to Gradle build scripts as well. It is important to take a good look at
your build scripts and see if things can be organized better and if code can be
reused instead of repeated. Even our simple build script can be rewritten like this:

def printTaskName = { task ->
 println "Run ${task.name}"
}

task third(dependsOn: 'second') << printTaskName

task second(dependsOn: 'first') << printTaskName

task first << printTaskName

This might seem trivial, but it is important to understand that we can apply the
same coding techniques we use in our application code to our build code.

Defining dependencies via tasks
In our build scripts, we defined the task dependencies using the task name. But,
there are more ways in which to define a task dependency. We can use the task
object instead of the task name to define a task dependency:

def printTaskName = { task ->
 println "Run ${task.name}"
}

task first << printTaskName

task second(dependsOn: first) << printTaskName

Defining dependencies via closures
We can also use a closure to define the task dependencies. The closure must return
a single task name or task object, or a collection of task names or task objects. Using
this technique, we can really fine-tune the dependencies for our task. For example, in
the following build script, we define a dependency for task second on all tasks in the
project with task names that have the letter "f" in the task name:

Chapter 2

[37]

def printTaskName = { task ->
 println "Run ${task.name}"
}

task second << printTaskName
second.dependsOn {
 project.tasks.findAll { task ->
 task.name.contains 'f'
 }
}

task first << printTaskName

task beforeSecond << printTaskName

When we run the build project we get the following output:

:beforeSecond

Run beforeSecond

:first

Run first

:second

Run second

BUILD SUCCESSFUL

Total time: 2.515 secs

Setting default tasks
To execute a task we use the task name on the command line when we run Gradle.
So, if our build script contains a task with the name first, we can run the task
with the following command:

$ gradle first

But, we can also define a default task or multiple default tasks that need to be
executed, even if we don't explicitly set the task name. So, if we run the gradle
command without arguments, the default task of our build script will be executed.

Creating Gradle Build Scripts

[38]

To set the default task or tasks, we use the method defaultTasks. We pass
the names of the tasks that need to be executed, to the method. In the following
build script, we make the tasks first and second the default tasks:

defaultTasks 'first', 'second'

task first {
 doLast {
 println "I am first"
 }
}

task second {
 doFirst {
 println "I am second"
 }
}

We can run our build script and get the following output:

$ gradle

:first

I am first

:second

I am second

BUILD SUCCESSFUL

Total time: 2.097 secs

Organizing tasks
In Chapter 1, Starting with Gradle, we already learned that we could use the tasks
task of Gradle to see which tasks are available for a build. Let us suppose we
have the following simple build script:

defaultTasks 'second'

task first << {
 println "I am first"
}

task second(dependsOn: first) << {
 println "I am second"
}

Chapter 2

[39]

Nothing fancy here. Task second is the default task and depends on task first.
When we run the tasks task on the command line, we get the following output:

$ gradle -q tasks

All tasks runnable from root project

Default tasks: second

Help tasks

dependencies - Displays the dependencies of root project 'chapter2'.

help - Displays a help message

projects - Displays the sub-projects of root project 'chapter2'.

properties - Displays the properties of root project 'chapter2'.

tasks - Displays the tasks runnable from root project 'chapter2'
(some of the displayed tasks may belong to subprojects).

Other tasks

second

To see all tasks and more detail, run with --all.

We see our task with the name second in the section Other tasks, but not the task
with the name first. To see all tasks, including the tasks other tasks depend on,
we must add the option --all to the tasks command:

$ gradle tasks --all

...

Default tasks: second

...

Other tasks

second

 first

...

Creating Gradle Build Scripts

[40]

Now we see our task with the name first. Gradle even indents the dependent
tasks so we can see that the task second depends on the task first.

At the beginning of the output, we see the line:

Default tasks: second

Gradle shows us which task is the default task in our build.

Adding a description to tasks
To describe our task, we can set the description property of a task. The value
of the description property is used by the tasks task of Gradle. Let's add a
description to our two tasks:

defaultTasks 'second'

task first(description: 'Base task') << {
 println "I am first"
}

task second(dependsOn: first, description: 'Secondary task') << {
 println "I am second"
}

Now when we run the tasks task, we get a more descriptive output:

$ gradle tasks --all

...

Other tasks

second - Secondary task

 first - Base task

...

Grouping tasks together
With Gradle, we can also group tasks together in so-called task groups. A task group
is a set of tasks that belong together logically. The task group is used, for example, in
the output of the tasks task we used earlier. Let's expand our sample build script by
grouping the two tasks together in a sample task group. We must assign a value to
the group property of a task:

defaultTasks 'second'

Chapter 2

[41]

def taskGroup = 'base'
task first(description: 'Base task', group: taskGroup) << {
 println "I am first"
}

task second(dependsOn: first, description: 'Secondary task', group:
taskGroup) << {
 println "I am second"
}

Next time when we run the tasks task, we can see our tasks grouped together
in a section Base tasks:

$ gradle tasks --all

...

Base tasks

first - Base task

second - Secondary task [first]

...

Note that the task dependency is appended to the description property of
task second.

Adding tasks in other ways
Until now, we have added tasks to our build project using the task keyword
followed by the name of the task. But there are more ways to add tasks to our
project. We can use a string value with the task name to define a new task:

task 'simple' << { task ->
 println "Running ${task.name}"
}

We can also use variable expressions to define a new task. If doing so, we
must use parentheses, because otherwise the expression cannot be resolved.
The following sample script defines a variable simpleTask with the string
value simple. This expresssion is used to define the task. The result is that
our project now contains a task with the name simple:

def simpleTask = 'simple'

task(simpleTask) << { task ->
 println "Running ${task.name}"
}

Creating Gradle Build Scripts

[42]

We can run the tasks task to see our newly created task:

$ gradle -q tasks

...

Other tasks

simple

...

We can also use the power of Groovy to add new tasks. We can use Groovy's
GString notation to dynamically create a task name. It is just like using
expressions in the previous sample, but expressed in a Groovy GString:

def simpleTask = 'simple'

task "${simpleTask}" << { task ->
 println "Running ${task.name}"
}

// Or use loops to create multiple tasks
['Dev', 'Acc', 'Prod'].each { environment ->
 task "deployTo${environment}" << { task ->
 println "Deploying to ${environment}"
 }
}

If we run the tasks task, we can see we have four new tasks:

$ gradle -q tasks

...

Other tasks

deployToAcc

deployToDev

deployToProd

simple

...

Another way to add a new task is through the tasks property of a project.
Remember that, in our build script, we have access to the Project object. Either
we use the project variable explicitly, or we use methods and properties of the
Project object implicitly, without using the project variable. The tasks property
of a project is basically a container for all tasks in our project. In the following build
script, we use the add method to add a new task:

Chapter 2

[43]

def printTaskName = { task ->
 println "Running ${task.name}"
}

// Use project variable.
project.tasks.add(name: 'first') << printTaskName

// Let Gradle resolve tasks to project variable.
tasks.add(name: 'second', dependsOn: 'first') << printTaskName

Using task rules
We have seen how we can add tasks dynamically to our build project. But we can
also define so-called task rules. These rules are very flexible and allow us to add
tasks to our project based on several parameters and project properties.

Suppose we want to add an extra task for every task in our project that shows the
description of a task. If we have a task first in our project, we want to add a task
descFirst to show the description property of the task first. With task rules,
we define a pattern for new tasks. In our sample this is desc<TaskName>; it is the
prefix desc followed by the name of the existing task. The following build script
shows the implementation of the task rule:

task first(description: 'First task')

task second(description: 'Second task')

tasks.addRule("Pattern: desc<TaskName>: show description of a task.")
{ taskName ->
 if (taskName.startsWith('desc')) {
 def targetTaskName = taskName - 'desc'
 def targetTaskNameUncapitalize = targetTaskName[0].
toLowerCase() + targetTaskName[1..-1]
 def targetTask = project.tasks.findByName(targetTaskNameUncap
italize)
 if (targetTask) {
 task(taskName) << {
 println "Description of task ${targetTask.name} ->
${targetTask.description}"
 }
 }
 }
}

Creating Gradle Build Scripts

[44]

If we run the tasks task, we see an extra Rules section in the output:

$ gradle tasks

...

Rules

Pattern: desc<TaskName>: show description of a task.

...

So, we know we can invoke descFirst and descSecond for our project. Note that
those two extra tasks are not shown in the Other tasks section, but the Rules
section shows the pattern we can use.

If we execute the descFirst and descSecond tasks, we get the following output:

$ gradle descFirst descSecond

:descFirst

Description of task first -> First task

:descSecond

Description of task second -> Second task

BUILD SUCCESSFUL

Total time: 2.223 secs

Accessing tasks as project properties
Each task that we add is also available as a Project property, and we can reference
this property like we can any other property in our build script. We can, for example,
invoke methods or get and set property values of our task through the property
reference. This means we are very flexible in how we create our tasks and add
behaviour to the tasks. In the following script, we use the Project property
reference to a task to change the description property:

task simple << { task ->
 println "Running ${task.name}"
}

// The simple task is available as project property.
simple.description = 'Print task name'

Chapter 2

[45]

simple.doLast {
 println "Done"
}
project.simple.doFirst {
 println "Start"
}

When we run our task from the command line, we get the following output:

$ gradle -q simple

Start

Running simple

Done

Adding additional properties to tasks
A task object already has several properties and methods. But we can add any
arbitrary new property to a task and use it. In the following sample, we print the
value of the task property message. The value of the property is assigned with the
statement simple.message = 'world':

task simple << {
 println "Hello ${message}"
}
simple.message = 'world'

When we run the task we get the following output:

$ gradle -q simple

Hello world

Avoiding common pitfalls
A common mistake when creating a task and adding actions for that task is that
we forget the left shift operator (<<). Then we are left with a valid syntax in our
build script, so we don't get an error when we execute the task. But instead of
adding actions, we have configured our task. The closure we use is then interpreted
as a configuration closure. All methods and properties in the closure are applied to
the task. We can add actions for our tasks in the configuration closure, but we must
use the doFirst and doLast methods. We cannot use the left shift operator (<<).

Creating Gradle Build Scripts

[46]

The following tasks do the same thing, but note the small subtle differences
when we define the tasks:

def printTaskName = { task ->
 println "Running ${task.name}"
}

task 'one' {
 // Invoke doFirst method to add action.
 doFirst printTaskName
}

// assign action through left-shift operator (<<)
task 'two' << printTaskName

task 'three' {
 // This line will be displayed during configuration
 // and not when we execute the task,
 // because we use the configuration closure
 // and forgot the << operator.
 println "Running three"
}

defaultTasks 'one', 'two'

Skipping tasks
Sometimes, we want tasks to be excluded from a build. In certain circumstances,
we just want to skip a task and continue executing other tasks. We can use several
methods to skip tasks in Gradle.

Using onlyIf predicates
Every task has a method onlyIf that accepts a closure as an argument. The result
of the closure must be true or false. If the task must be skipped, the result of the
closure must be false, otherwise the task is executed. The task object is passed as a
parameter to the closure. Gradle evaluates the closure just before the task is executed.

The following build file will skip the task longrunning, if the file is executed during
weekdays, but will execute it during the weekend:

Chapter 2

[47]

import static java.util.Calendar.*

task longrunning {
 onlyIf { task ->
 def now = Calendar.instance
 def weekDay = now[DAY_OF_WEEK]
 def weekDayInWeekend = weekDay in [SATURDAY, SUNDAY]
 return weekDayInWeekend
 }
 doLast {
 println "Do long running stuff"
 }
}

If we run our build during weekdays, we get the following output:

$ gradle longrunning

:longrunning SKIPPED

BUILD SUCCESSFUL

Total time: 2.448 secs

And if we run the build during the weekend, we see that the task is executed:

$ gradle longrunning

:longrunning

Do long running stuff

BUILD SUCCESSFUL

Total time: 1.823 secs

We can invoke the onlyIf method multiple times for a task. If one of the
predicates returns false, the task is skipped. Besides using a closure to define
the condition that determines if the task needs to be executed or not, we can use
an implementation of the org.gradle.api.specs.Spec interface. The Spec interface
has one method: isSatisfiedBy. We must write an implementation and return true
if the task must be executed or false if we want the task to be skipped. The current
task object is passed as a parameter to the isSatisfiedBy method.

Creating Gradle Build Scripts

[48]

In the following sample we check if a file exists. And if the file exists we can execute
the task, otherwise the task is skipped:

def file = new File('data.sample')

task 'handleFile' << {
 println "Work with file ${file.name}"
}

handleFile.onlyIf(new Spec() {
 boolean isSatisfiedBy(task) {
 file.exists()
 }
})

Skipping tasks by throwing
StopExecutionException
Another way to the skip execution of a task is to throw a StopExecutionException
exception. If such an exception is thrown, the build will stop the current task and
continue with the next task. We can use the doFirst method to add a precondition
check for a task. In the closure, when we pass to the doFirst method, we can check
for a condition and throw a StopExecutionException exception if necessary.

In the following build script, we check if the script is executed during working
hours. If so, the exception is thrown and task first is skipped:

def printTaskName = { task ->
 println "Running ${task.name}"
}

task first << printTaskName

first.doFirst {
 def today = Calendar.instance
 def workingHours = today[Calendar.HOUR_OF_DAY] in 8..17

 if (workingHours) {
 throw new StopExecutionException()
 }
}

task second(dependsOn: 'first') << printTaskName

Chapter 2

[49]

If we run our script during working hours and look at the output of our build script,
we will notice that we cannot see the task has been skipped. If we use the onlyIf
method, Gradle will add SKIPPED to a task that is not executed:

$ gradle second

:first

:second

Running second

BUILD SUCCESSFUL

Total time: 2.174 secs

Enabling and disabling tasks
We have seen how we can skip tasks with the onlyIf method or by throwing
StopExecutionException. But we can also use another method to skip a task.
Every task has an enabled property. By default, the value of the property is true,
which means the task is enabled and is executed. We can change the value and set
it to false to disable the task and skip its execution.

In the following sample, we check for the existence of a directory, and if it exists,
the enabled property is set to true, if not, it is set to false:

task 'listDirectory' {
 def dir = new File('assemble')
 enabled = dir.exists()
 doLast {
 println "List directory contents: ${dir.listFiles().
join(',')}"
 }
}

If we run the task and the directory doesn't exist, we get the following output:

$ gradle listDirectory

:listDirectory SKIPPED

BUILD SUCCESSFUL

Total time: 2.112 secs

Creating Gradle Build Scripts

[50]

If we run the task, and this time the directory exists, containing a single file with the
name sample, we get the following output:

$ gradle lD

:listDirectory

List directory contents: assemble/sample

BUILD SUCCESSFUL

Total time: 2.118 secs

Skipping from the command line
Until now, we have defined the rules to skip a task in the build file. But we can
use the --exclude-tasks (-x) command-line option if we run the build. We must
define, as an argument, which task we want to exclude from the tasks to be executed.

The following script has three tasks with some task dependencies:

def printTaskName = { task ->
 println "Run ${task.name}"
}

task first << printTaskName

task second(dependsOn: first) << printTaskName

task third(dependsOn: [second, first]) << printTaskName

If we run the gradle command and exclude task second, we get the following output:

$ gradle third -x second

:first

Run first

:third

Run third

BUILD SUCCESSFUL

Total time: 1.618 secs

If our task third didn't depend on task first, only task third would be executed.

Chapter 2

[51]

Skipping tasks that are up-to-date
Until now, we have defined conditions that are evaluated to determine whether
a task needs to be skipped or not. But with Gradle, we can be even more flexible.
Suppose we have a task that works on a file and generates some output based on
the file. For example, a compile task fits this pattern. In the following sample build
file, we have task convert that will take an XML file, parse the contents, and write
data to a text file.

task(convert) {
 def source = new File('source.xml')
 def output = new File('output.txt')
 doLast {
 def xml = new XmlSlurper().parse(source)
 output.withPrintWriter { writer ->
 xml.person.each { person ->
 writer.println "${person.name},${person.email}"
 }
 }
 println "Converted ${source.name} to ${output.name}"
 }
}

We can run this task a couple of times. Each time, the data is read from the XML
file and written to the text file:

$ gradle -q convert

Converted source.xml to output.txt

$ gradle -q convert

Converted source.xml to output.txt

But our input file hasn't changed between the task invocations, so the task doesn't
have to be executed. We want the task to be executed only if the source file has
changed or the output file is missing or has changed since the last run of the task.

Gradle supports this pattern; this support is known as incremental build support.
A task only needs to be executed if necessary. This is a very powerful feature of
Gradle. It will really speed up a build process, because only those tasks that need
to be executed are executed.

We need to change the definition of our task, so that Gradle can determine whether
the task needs to be executed based on changes in the input file or output file of the
task. A task has the properties inputs and outputs that are used for this purpose.
To define an input file, we invoke the file method of the inputs property with
the value of our input file. We set the output file by invoking the file method
of the outputs property.

Creating Gradle Build Scripts

[52]

Let's rewrite our task to make it support Gradle's incremental build feature:

task(convert) {
 def source = new File('source.xml')
 def output = new File('output.txt')

 // Define input file
 inputs.file source

 // Define output file
 outputs.file output

 doLast {
 def xml = new XmlSlurper().parse(source)
 output.withPrintWriter { writer ->
 xml.person.each { person ->
 writer.println "${person.name},${person.email}"
 }
 }
 println "Converted ${source.name} to ${output.name}"
 }
}

When we run the build file a couple of times, we see that our task is skipped
the second time we run it, because the input and output file haven't changed:

$ gradle convert

: convert

Converted source.xml to output.txt

BUILD SUCCESSFUL

Total time: 2.623 secs

$ gradle convert

:convert UP-TO-DATE

BUILD SUCCESSFUL

Total time: 1.53 secs

Chapter 2

[53]

We have defined a single file for the inputs and outputs properties. But Gradle
supports more ways to define values for these properties. The inputs property
has methods to add a directory, multiple files, or even properties to be watched
for changes. The outputs property has methods to add a directory or multiple files
to be monitored for changes. And if these methods are not appropriate for our build,
we can even use the method upToDateWhen for the outputs property. We pass a
closure or implementation of the org.gradle.api.specs.Spec interface to define
a predicate that determines whether the output of the task is up-to-date.

The following build script uses some of these methods:

project.version = '1.0'

task createVersionDir {
 def outputDir = new File('output')

 // If project.version changes then the
 // task is no longer up-to-date
 inputs.property 'version', project.version

 outputs.dir outputDir

 doLast {
 println "Making directory ${outputDir.name}"
 mkdir outputDir
 }
}

task convertFiles {
 // Define multiple files to be checked as inputs.
 inputs.files 'input/input1.xml', 'input/input2.xml'
 // Or use inputs.dir 'input' to check a complete directory.

 // Use upToDateWhen method to define predicate.
 outputs.upToDateWhen {
 // If output directory contains any file which name
 // starts with output and has the txt extension,
 // then the task is up-to-date.
 new File('output').listFiles().any { it.name ==~ /output.*\.
txt$/ }
 }

 doLast {
 println "Running convertFiles"
 }
}

Creating Gradle Build Scripts

[54]

Summary
In this chapter we learned how to create tasks in a build project. We created tasks
with actions in several ways and learned how to configure tasks.

We skipped tasks by using predicates, throwing StopExecutionException,
and enabling or disabling a task. And we even learned how to skip tasks from
the command line.

A very powerful feature of Gradle is the incremental build support. If a task
is up-to-date, it isn't executed. We can define the rules for determining the
up-to-date state in the tasks definition.

In the next chapter, we will take a more in-depth look at the Gradle Project object.

Working with Gradle
Build Scripts

A Gradle script is a program. We use a Groovy DSL to express our build logic.
Gradle has several useful built-in methods for handling files and directories,
because we often deal with files and directories in our build logic.

In this chapter we will learn how we can use Gradle's features to work with files
and directories. Also, we will take a look at how we can set properties in a Gradle
build and use Gradle's logging framework. Finally, we see will how we can use the
Gradle wrapper task to distribute a configurable Gradle with our build scripts.

Working with files
It is very common in a build script that we have to work with files and directories.
For example, when we need to copy a file from one directory to another, or when
we first create a directory to store the output of a task or program.

Locating files
To locate a file or directory relative to the current project, we can use the file()
method. This method is actually a method of the Project object that is connected
to our build script. In the previous chapter we learned how we could use an explicit
reference to the project variable or simply invoke methods and properties of the
Project object implicitly.

The file() method will resolve the location of a file or directory relative to the
current project and not the current working directory. This is very useful because we
can run a build script from a different directory than the location of the actual build
script. File or directory references that are returned by the file() method are then
resolved relative to the project directory.

Working with Gradle Build Scripts

[56]

We can pass any object as an argument to the file() method. Usually, we will pass
a String or java.io.File object.

In the next example we will demonstrate how we can use the file() method to get
a reference to a File object:

// Use String for file reference.
File wsdl = file('src/wsdl/sample.wsdl')

// Use File object for file reference.
File xmlFile = new File('xml/input/sample.xml')
def inputXml = project.file(xmlFile)

There are many more ways in which we can use the file() method. We can pass a
URL or URI instance as an argument. Only file: URLs are now supported by Gradle.
We can also use closure to define the file or directory. Finally, we could also pass an
instance of the java.util.concurrent.Callable interface, where the return value
of the call() method is a valid reference to a file or directory:

import java.util.concurrent.Callable

// Use URL instance to locate file.
URL url = new URL('file:/README')
File readme = file(url)

// Or a URI instance.
URI uri = new URI('file:/README')
def readmeFile = file(uri)

// Use a closure to determine the
// file or directory name.
def fileNames = ['src', 'web', 'config']
def configDir = file {
 fileNames.find { fileName ->
 fileName.startsWith('config')
 }
}

// Use Callable interface.
def source = file(new Callable<String>() {
 String call() {
 'src'
 }
})

Chapter 3

[57]

With the file() method we create a new File object; this object can reference a file
or a directory. We can use the isFile() or the isDirectory() method of the File
object to see if we are dealing with a file or a directory. In case we want to check if
the file or directory really exists, we use the exists() method. Because our Gradle
build script is written in Groovy, we can also use the extra properties and methods
added by Groovy to the File class. For example, we can use the text property to
read the contents of a file. However, we can only test the File object after we have
used the file() method to create it. What if we want to stop the build if a directory
doesn't exist or if we are dealing with a file and we expected to be dealing with a
directory? In Gradle we can pass an extra argument to the file() method, of type
org.gradle.api.PathValidation. Gradle then validates if the created File object
is valid for the PathValidation instance; if it isn't, the build is stopped and we get
a nice error message telling us what went wrong.

Suppose we want to work with a directory named config, in our build script.
The directory must be present, otherwise the build will stop:

def dir = project.file(new File('config'), PathValidation.DIRECTORY)

Now we can run the build and see from the output that the directory doesn't exist:

$ gradle -q build.gradle

...

* What went wrong:

A problem occurred evaluating root project 'chapter3'.

Cause: Directory '/samples/chapter3/config' does not exist.

...

We can also use the PathValidation argument to test if a File object is really
a file and not a directory. Finally, we can check if the File object references an
existing file or directory. If the file or directory doesn't exist, an exception is
thrown and the build stops:

// Check file or directory exists.
def readme = project.file('README', PathValidation.EXISTS)

// Check File object is really a file.
def license = project.file('License.txt', PathValidation.FILE)

Working with Gradle Build Scripts

[58]

Using file collections
We can also work with a set of files or directories instead of just a single file or
directory. In Gradle, a set of files is represented by the ConfigurableFileCollection
interface. The nice thing is that a lot of classes in the Gradle API implement
this interface.

We can use the files() method to define a file collection in our build script.
This method is defined in the Project object we can access in our build script.
The files() method accepts many different types of arguments, which makes
it very flexible to use. For example, we can use String and File objects to define
a file collection.

As with the file() method, paths are resolved relative to the project directory:

// Use String instances.
ConfigurableFileCollection multiple = files('README', 'licence.txt')

// Use File objects.
ConfigurableFileCollection userFiles = files(new File('README'), new
File('INSTALL'))

// We can combine different argument types.
def combined = files('README', new File('INSTALL'))

But these are not the only arguments we can use. We can pass a URI or URL object,
just as we could with the file() method:

def urlFiles = files(new URI('file:/README'), new URL('file:/
INSTALL'))

We can also use an array, Collection, or Iterable object with filenames or another
ConfigurableFileCollection instance as an argument:

// Use a Collection with file or directory names.
def listOfFileNames = ['src', 'test']
def mainDirectories = files(listOfFileNames)

// Use an array.
mainDirectories = files(listOfFileNames as String[])

// Or an implementation of the Iterable interface.
mainDirectories = files(listOfFileNames as Iterable)

Chapter 3

[59]

// Combine arguments and pass another file collection.
def allDirectories = files(['config'], mainDirectories)

We can also use a closure or an instance of the Callable interface to define
a list of files:

import java.util.concurrent.Callable

def dirs = files {
 [new File('src'), file('README')].findAll { it.directory }
}

def rootFiles = files(new Callable<List<File>>() {
 List<File> call() {
 [new File('src'), file('README'), file('INSTALL')].findAll {
it.file }
 }
})

Finally, we can pass a Task object as an argument to the files() method. The
output property of the task is used to determine the file collection. Let's look at the
convert task we created in the previous chapter. This task has an outputs property
with a single file, but this could also be multiple files or a directory. To get the file
collection object in our build script, we simply pass the Task instance as an argument
to the files() method:

task(convert) {
 def source = new File('source.xml')
 def output = new File('output.txt')

 // Define input file
 inputs.file source

 // Define output file
 outputs.file output

 doLast {
 def xml = new XmlSlurper().parse(source)
 output.withPrintWriter { writer ->
 xml.person.each { person ->
 writer.println "${person.name},${person.email}"
 }
 }

Working with Gradle Build Scripts

[60]

 println "Converted ${source.name} to ${output.name}"
 }
}

// Get the file collection from
// the task outputs property.
def taskOutputFiles = files(convert)

It is also important to note that the file collection is lazy. This means the paths in the
collection are not resolved when we define the collection. The paths in the collection
are only resolved when the files are actually queried and used in the build script.

The ConfigurableFileCollection interface has useful methods to manipulate the
collection, for example, we can use the + and - operators to add or remove elements
from the collection, respectively:

// Define collection.
def fileCollection = files('README', 'INSTALL')

// Remove INSTALL file from collection.
def readme = fileCollection - files('INSTALL')

// Add new collection to existing collection.
def moreFiles = fileCollection + files(file('config', PathValidation.
DIRECTORY))

To get the absolute path names for the elements in ConfigurableFileCollection,
we can use the asPath property. The path names are separated by the operating
system's path separator. On a Microsoft Windows operating system, the semi-
colon (;) is used as a path separator, and in Linux or Mac OS X operating systems,
the colon (:) is used. This means we can simply use the asPath property on any
operating system and Gradle will automatically use the correct path separator:

task 'collectionPath' << {
 def fileCollection = files('README', 'INSTALL')
 println fileCollection.asPath
}

When we run the build script on Mac OS X, we get the following output:

$ gradle -q collectionPath

/samples/chapter3/README:/samples/chapter3/INSTALL

Chapter 3

[61]

To get the File objects that make up the file collection, we can use the files
property. We can also cast the collection to a list of File objects using the as
keyword; if we know our collection is made up of just a single file or directory,
then we can use the singleFile property to get the File object:

def fileCollection = files('README', [new File('INSTALL')])

// Get all elements as File objects.
def allFiles = fileCollection.files

// Or use casting with as keyword.
def fileObjects = fileCollection as File[]

def singleFileCollection = files('INSTALL')

// Get single file as File object.
def installFile = singleFileCollection.singleFile

Finally, we can apply a filter to our file collection with the filter() method. We
pass a closure that defines which elements are to be in the filtered collection. The
filtered collection is a live collection. This means that if we add new elements to the
original collection, the filter closure is applied again for our filtered collection. In the
following example we have the filterFiles task, where we define a file collection
of two files with the names INSTALL.txt and README. Next, we define a new file
collection with a filter that contains all files that have the filename extension .txt.
This collection is a live, filtered collection because when we add a new file to the
original collection, the filtered collection is also updated:

task 'filterFiles' << {
 def rootFiles = files('INSTALL', 'README')

 // Filter for files smaller than 5KB
 def smallFiles = rootFiles.filter {
 it.name.endsWith 'txt'
 }

 rootFiles = rootFiles + files('LICENSE.txt')

 // smallFiles now contains 2 files:
 // INSTALL and LICENSE
}

Working with Gradle Build Scripts

[62]

Working with file trees
In Gradle we can also work with file collections organized as a tree, for example,
a directory tree on a disk or hierarchical content in a ZIP file. A hierarchical file
collection is represented by a ConfigurableFileTree interface. This interface
extends the ConfigurableFileCollection interface that we saw earlier.

To create a new file tree, we use the fileTree() method in our project. We can
use several ways to define the file tree.

If we don't provide a base directory, the current project directory
is used as the base directory of the file tree.

We can use the include and includes properties and methods to define a matching
pattern to include a file (or files) in the file tree. With the exclude and excludes
properties and methods, we can use the same syntax to exclude a file or multiple files
from the file tree. The matching pattern style is described as an ANT-style matching
pattern because the ANT build tool uses this style to define a syntax for matching
filenames in file trees. The following patterns can be used:

• * to match any number of characters
• ? to match any single character
• ** to match any number of directories or files

The following example demonstrates how we can create a file tree:

// Create file tree with base directory 'src/main'
// and only include files with extension .java
def srcDir = fileTree('src/main').include('**/*.java')

// Use map with arguments to create a file tree.
def resources = fileTree(dir: 'src/main', excludes: ['**/*.java,
'**/*.groovy'])

// Create file tree with project directory as base
// directory and use method includes() on tree
// object to include 2 files.
FileTree base = fileTree()
base.includes ['README', 'INSTALL']

// Use closure to create file tree.
def javaFiles = fileTree {
 from 'src/main/java'
 exclude '*.properties'
}

Chapter 3

[63]

To filter a file tree, we can use the filter() method like we do with file collections,
but we can also use the matching() method. We pass a closure to the matching()
method or an instance of the org.gradle.api.tasks.util.PatternFilterable
interface. We can use the include, includes, exclude, and excludes methods to
either include or exclude files from the file tree:

def sources = fileTree {
 from 'src'
}

def javaFiles = sources.matching {
 include '**/*.java'
}

def nonJavaFiles = sources.matching {
 exclude '**/*.java'
}

def nonLanguageFiles = sources.matching {
 exclude '**/*.scala', '**/*.groovy', '**/*.java'
}

def modifiedLastWeek = sources.matching {
 lastWeek = new Date() - 7
 include { FileTreeElement file ->
 file.lastModified > lastWeek.time
 }
}

We can use the visit() method to visit each tree node. We can check if the node
is a directory or a file. The tree is then visited in breadth-wise order:

FileTree testFiles = fileTree(dir: 'src/test')

testFiles.visit { FileVisitDetails fileDetails ->
 if (fileDetails.directory) {
 println "Entering directory ${fileDetails.relativePath"
 } else {
 println "File name: ${fileDetails.name}"
 }
}

def projectFiles = fileTree()

Working with Gradle Build Scripts

[64]

projectFiles.visit(new FileVisitor() {
 void visitDir(FileVisitDetails details) {
 println "Directory: ${details.path}"
 }

 void visitFile(FileVisitDetails details) {
 println "File: ${details.path}, size: ${details.size}"
 }
})

Copying files
To copy files in Gradle, we can use the Copy task. We must assign a set of source
files to be copied and the destination of those files. This is defined with a copy spec.
A copy spec is defined by the org.gradle.api.file.CopySpec interface. The
interface has a from() method we can use to set the files or directories we want
to copy. With the into() method we specify the destination directory or file.

The following example shows a simple Copy task called simpleCopy with a single
source directory src/xml and a destination directory definitions:

task simpleCopy(type: Copy) {
 from 'src/xml'
 into 'definitions'
}

The from() method accepts the same arguments as the files() method.
When the argument is a directory, all files in that directory—but not the directory
itself—are copied to the destination directory. If the argument is a file, then only
that file is copied.

The into() method accepts the same arguments as the file() method. To include
or exclude files, we use the include() and exclude() methods of the CopySpec
interface. We can apply the ANT-style matching patterns just like we do with the
fileTree() method.

The following example defines a task with the name copyTask and uses the
include() and exclude() methods to select the set of files to be copied:

def getTextFiles = {
 '**/*.txt'
}

def getDestinationDir = {
 file('dist')

Chapter 3

[65]

}

task copyTask(type: Copy) {
 // Copy from directory
 from 'src/webapp'

 // Copy single file
 from 'README.txt'

 // Include files with html extension.
 include '**/*.html', '**/*.htm'

 // Use closure to resolve files.
 include getTextFiles

 exclude 'INSTALL.txt'

 // Copy into directory dist
 // resolved via closure.
 into getDestinationDir
}

Another way to copy files is with the Project.copy() method. The copy()
method accepts a CopySpec interface implementation, just like the Copy task.
Our simpleCopy task could also have been written like this:

task simpleCopy << {
 copy {
 from 'src/xml'
 into 'definitions'
 }
}

Renaming files
With the rename() method of the CopySpec interface, we can rename files as they
are copied. The method accepts a closure argument, with the closure argument being
the name of the file. We can return a new filename to change the filename or return a
null value to keep the original filename:

task copyAndRename(type: Copy) {
 from 'src'

Working with Gradle Build Scripts

[66]

 rename { String fileName ->
 if (fileName.endsWith('txt')) {
 String original = fileName
 String originalWithoutExtension = original - '.txt'
 originalWithoutExtension + '.text'
 }
 }

 into 'dist'
}

Besides using a closure to rename files during the copy action, we can use a String
value as a regular expression or a java.util.regexp.Pattern object as a regular
expression. We also provide the replacement String value when a filename matches
the pattern. If the regular expression captures groups, we must use the $1 syntax
to reference a group. If a file doesn't match the regular expression, the original
filename is used:

task copyAndRenameRegEx(type: Copy)

copyAndRenameRegEx {
 from 'src'

 // Change extension .txt to .text.
 rename '(.*).txt', '$1.text'

 // Rename files that start with sample-
 // and remove the sample- part.
 rename ~/^sample-(.*)/, '$1'

 into 'dist'
}

Filtering files
To filter files we must use the filter() method of the CopySpec interface. We can
pass a closure to the filter() method. Each line of the file is passed to the closure,
and we must return a new String value to replace that line. Besides a closure, we
can pass an implementation of the java.io.FilterReader interface. The ANT build
tool already has several filter implementations that we can use in a Gradle build.
We must import the org.apache.tools.ant.filters.* package to access the
ANT filters. We can pass along the properties for a filter with this method invocation:

Chapter 3

[67]

import org.apache.tools.ant.filters.*

task filterFiles(type: Copy) {
 from 'src/filter.txt'
 into 'dist'

 // Closure to replace each line.
 filter { line ->
 "I say: $line"
 }

 // Use ANT filter ReplaceTokens.
 filter(ReplaceTokens, tokens: [message: 'Hello'])
}

We set the following contents for src/filter.txt:

@message@ everyone

If we execute the filterFiles task, we get the resulting filter.txt file in the
dist directory:

I say: Hello everyone

We can use the expand() method to expand property references in a file. The file
is transformed with a groovy.text.SimpleTemplateEngine object, which is part
of Groovy. Properties are defined as $property or ${property} and we can even
include code such as ${new Date()} or ${value ? value : 'default'}.

In the following example we use the expand() method to replace the property
languages in the file src/expand.txt:

task expandFiles(type: Copy) {
 from 'src/expand.txt'
 into 'dist'

 // Set property languages
 expand languages: ['Java', 'Groovy', 'Scala']

 rename 'expand.txt', 'expanded.txt'
}

Working with Gradle Build Scripts

[68]

We execute the expandFiles task with the following contents for src/expand.txt:

A list of programming languages: ${languages.join(', ')}

Then, we get the following new contents in the file dist/expanded.txt:

A list of programming languages: Java, Groovy, Scala.

Archiving files
To create an archive file, we can use the Zip, Tar, Jar, War, and Ear tasks. To define
the source files for the archive and the destination inside the archive files, we use a
CopySpec interface, just like with copying files. We can use the rename(), filter(),
expand(), include(), and exclude() methods in the same way. So, we don't have
to learn anything new; we can use what we have already learned.

To set the filename of the archive, we use any of these properties: baseName,
appendix, version, classifier, and extension. Gradle will use the following
pattern to create a filename: [baseName]-[appendix]-[version]-[classifier].
[extension]. If a property is not set, then it is not included in the resulting filename.
To override the default filename pattern, we can set the archiveName property and
assign our own complete filename, which is used for the resulting archive file.

In the following example, we create a ZIP archive with the archiveZip task. We
include all the files from the dist directory and put them in the root of the archive.
The name of the file is set by the individual properties that follow Gradle's pattern:

task archiveDist(type: Zip) {
 from 'dist'

 // Create output filename.
 baseName = 'dist-files'
 appendix = 'archive'
 extension = 'zip'
 version = '1.0'
 classifier = 'sample'
}

When we run the archiveDist task, a new file called dist-files-archive-1.0-
sample.zip is created in the root of our project. To change the destination directory
of the archive file, we must set the destinationDir property. In the following
example, we set the destination directory to build/zips. We also put the files in
 a files directory inside the archive file with the into() method. The name of the
file is now set by the archiveName property:

Chapter 3

[69]

task archiveFiles(type: Zip) {
 from 'dist'

 // Copy files to a directory inside the archive.
 into 'files'

 // Set destination directory.
 destinationDir = file("$buildDir/zips")

 // Set complete filename.
 archiveName = 'dist-files.zip'
}

To create a TAR archive with the optional gzip or bzip2 compression, we
must use the tarFiles task. The syntax is the same as the task for type Zip,
but we have an extra property compression that we can use to set the type of
compression (gzip, bzip2) we want to use. If we don't specify the compression
property, no compression is used to create the archive file.

In the following example, we create a tarFiles task of type Tar. We set the
compression property to gzip. After running this task, we get a new file called
dist/tarballs/dist-files.tar.gz:

task tarFiles(type: Tar) {
 from 'dist'

 // Set destination directory.
 destinationDir = file("$buildDir/tarballs")

 // Set filename properties.
 baseName = 'dist-files'
 extension = 'tar.gz'

 compression = Compression.GZIP // or Compression.BZIP2
}

The Jar, War, and Ear task types follow the same pattern as the Zip and Tar task
types. Each type has some extra properties and methods to include files specific
for that type of archive. We will see examples of these tasks when we look at how
we can use Gradle in Java projects.

Working with Gradle Build Scripts

[70]

Project properties
In a Gradle build file we can access several properties that are defined by Gradle, but
we can also create our own properties. We can set the value of our custom properties
directly in the build script and also by passing values via the command line.

The default properties we can access in a Gradle build are displayed in the
following table:

Name Type Default value
project Project The project instance.
name String The name of the project directory.

The name is read-only.
path String The absolute path of the project.
description String Description of the project.
projectDir File The directory containing the build

script. The value is read-only.
buildDir File Directory with the name build in the

directory containing the build script.
group Object Not specified.
version Object Not specified.
ant AntBuilder An AntBuilder instance.

The following build file has a task to show the value of the properties:

version = '1.0'
group = 'Sample'
description = 'Sample build file to show project properties'

task defaultProperties << {
 println "Project: $project"
 println "Name: $name"
 println "Path: $path"
 println "Project directory: $projectDir"
 println "Build directory: $buildDir"
 println "Version: $version"
 println "Group: $project.group"
 println "Description: $project.description"
 println "AntBuilder: $ant"
}

Chapter 3

[71]

When we run the build, we get the following output:

$ gradle defaultProperties

:defaultProperties

Project: root project 'chapter3'

Name: defaultProperties

Path: :defaultProperties

Project directory: /Users/mrhaki/Projects/gradle-book/samples/chapter3

Build directory: /Users/mrhaki/Projects/gradle-book/samples/chapter3/
build

Version: 1.0

Group: Sample

Description: Sample build file to show project properties

AntBuilder: org.gradle.api.internal.project.DefaultAntBuilder@1ebafda6

BUILD SUCCESSFUL

Total time: 2.328 secs

Defining custom properties in script
To add our own properties, we have to define them in an ext{} script block in a
build file. Prefixing the property name with ext. is another way to set the value.
To read the value of the property, we don't have to use the ext. prefix; we can
simply refer to the name of the property. The property is automatically added
to the internal project property as well.

In the following script, we add a property customProperty with a String value
custom. In the showProperties task, we show the value of the property:

ext.customProperty = 'custom'

// Or we can use ext{} script block.
ext {
 anotherCustomProperty = 'custom'
}

task showProperties {
 doLast {

Working with Gradle Build Scripts

[72]

 println customProperty
 println ext.customProperty
 println project.customProperty
 }
}

After running the script, we get the following output:

$ gradle sP

:showProperties

custom

custom

BUILD SUCCESSFUL

Total time: 2.419 secs

Passing properties via the command line
Instead of defining the property directly in the build script, we can use the -P
command-line option to add an extra property to a build. We can also use the -P
command-line option to set a value for an existing property.

The following build script has a showProperties task that shows the value of
an existing property and a new property:

task showProperties {
 doLast {
 println "Version: $version"
 println "Custom property: $customProperty"
 }
}

Let's run our script and pass the values for the existing version property
and the non-existent customProperty:

$ gradle -Pversion=1.1 -PcustomProperty=custom showProperties

showProperties

Version: 1.1

Custom property: custom

BUILD SUCCESSFUL

Total time: 2.266 secs

Chapter 3

[73]

Defining properties via system properties
We can also use Java system properties to define properties for our Gradle build.
We use the -D command-line option just like in a normal Java application. The name
of the system property must start with org.gradle.project, then the name of the
property we want to set, followed by the value.

We can use the same build script we created before:

task showProperties {
 doLast {
 println "Version: $version"
 println "Custom property: $customProperty"
 }
}

But this time we use different command-line options to get a result:

$ gradle -Dorg.gradle.project.version=2.0 -Dorg.gradle.project.
customProperty=custom showProperties

:showProperties

Version: 2.0

Custom property: custom

BUILD SUCCESSFUL

Total time: 1.656 secs

Adding properties via environment variables
Using the command-line options provides much flexibility; however, sometimes we
cannot use the command-line options because of environment restrictions or because
we don't want to retype the complete command-line options each time we invoke the
Gradle build. Gradle can also use environment variables set in the operating system
to pass properties to a Gradle build.

The environment variable name starts with ORG_GRADLE_PROJECT_ and is followed
by the property name. We use our build file to show the properties:

task showProperties {
 doLast {
 println "Version: $version"
 println "Custom property: $customProperty"
 }
}

Working with Gradle Build Scripts

[74]

Firstly, we set the ORG_GRADLE_PROJECT_version and ORG_GRADLE_PROJECT_
customProperty environment variables, then we run our showProperties task:

$ export ORG_GRADLE_PROJECT_version=3.1

$ export ORG_GRADLE_PROJECT_customProperty="Set by environment variable"

$ gradle showProp

:showProperties

Version: 3.0

Custom property: Set by environment variable

BUILD SUCCESSFUL

Total time: 1.668 secs

Defining properties using an external file
Finally, we can also set the properties for our project in an external file. The file
needs to be named gradle.properties and it should be a plain text file with the
name of the property and its value on separate lines. We can place the file in the
project directory or in the Gradle user home directory. The default Gradle user
home directory is $USER_HOME/.gradle. A property defined in the properties
file in the Gradle user home directory overrides the property values defined
in a properties file in the project directory.

We will now create a gradle.properties file in our project directory, with the
following contents:

version = 4.0
customProperty = Property value from gradle.properties

We use our build file to show the property values:

task showProperties {
 doLast {
 println "Version: $version"
 println "Custom property: $customProperty"
 }
}

If we run the build file, we don't have to pass any command-line options;
Gradle will use gradle.properties to get values of the properties:

Chapter 3

[75]

$ gradle showProperties

:showProperties

Version: 4.0

Custom property: Property value from gradle.properties

BUILD SUCCESSFUL

Total time: 1.623 secs

Using logging
In Chapter 1, Starting with Gradle, we learned about several command-line options
we can use to show either more or fewer log messages when we run a Gradle build.
These messages were from the Gradle internal tasks and classes. We used a println
method in our Gradle build scripts to see some output, but we can also use Gradle's
logging mechanisms to have a more customizable way to define logging messages.

Gradle supports several logging levels that we can use for our own messages.
The level of our messages is important because we can use the command-line
options to filter the messages for log levels.

The following table shows the log levels that are supported by Gradle:

Level Used for
DEBUG Debug messages
INFO Information messages
LIFECYCLE Progress information messages
WARNING Warning messages
QUIET Import information messages
ERROR Error messages

Every Gradle build file and task has a logger object. The logger object is an
instance of a Gradle-specific extension of the SLF4J Logger interface. SLF4J is a
Java logging library and stands for Simple Logging Facade for Java. This library
provides a logging API that is independent of the underlying logging framework.
A specific logging framework can be used at deploy time or runtime to output the
actual log message.

Working with Gradle Build Scripts

[76]

To use the logger object in our Gradle build files, we only have to reference logger
and invoke the method for the logging level we want to use, or we can use the
common method log() and pass the log level as a parameter to this method.

Let's create a simple task and use the different log levels:

task logLevels << {
 // Simple logging sample.
 logger.debug 'debug: Most verbose logging level.'
 logger.log LogLevel.DEBUG, 'debug: Most verbose logging level.'

 logger.info 'info: Use for information messages.'
 logger.log LogLevel.INFO, 'info: Most verbose logging level.'

 logger.lifecycle 'lifecycle: Progress information messages'
 logger.log LogLevel.LIFECYCLE, 'lifecycle: Most verbose logging
level.'

 logger.warn 'warn: Warning messages like invalid configuration'
 logger.log LogLevel.WARN, 'warn: Most verbose logging level.'

 logger.quiet 'quiet: This is important but not an error'
 logger.log LogLevel.QUIET, 'quiet: Most verbose logging level.'

 logger.error 'error: Use for errors'
 logger.log LogLevel.ERROR, 'error: Most verbose logging level.'
}

When we run this task from the command line, we get the following output:

$ gradle logLevels

:logLevels

lifecycle: Progress information messages

lifecycle: Most verbose logging level.

warn: Warning messages like invalid configuration

warn: Most verbose logging level.

quiet: This is important but not an error

quiet: Most verbose logging level.

error: Use for errors

error: Most verbose logging level.

BUILD SUCCESSFUL

Total time: 2.356 secs

Chapter 3

[77]

We notice that only the LIFECYCLE, WARN, QUIET, and ERROR log levels are shown if
we don't add any extra command-line options. To see the INFO messages, we must
use the --info command-line option. Then we get the following output:

$ gradle --info logLevels

Starting Build

Settings evaluated using empty settings file.

Projects loaded. Root project using build file '/chapter3/logging.
gradle'.

Included projects: [root project 'chapter3']

Evaluating root project 'chapter3' using build file '/chapter3/logging.
gradle'.

All projects evaluated.

Selected primary task 'logLevels'

Tasks to be executed: [task ':logLevels']

:logLevels

Task ':logLevels' has not declared any outputs, assuming that it is
out-of-date.

info: Use for information messages.

info: Most verbose logging level.

lifecycle: Progress information messages

lifecycle: Most verbose logging level.

warn: Warning messages like invalid configuration

warn: Most verbose logging level.

quiet: This is important but not an error

quiet: Most verbose logging level.

error: Use for errors

error: Most verbose logging level.

BUILD SUCCESSFUL

Total time: 1.879 secs

Notice that we also get more messages from Gradle itself. Earlier, we only saw the
log messages from our script, but this time a lot of extra logging is shown about
the build process itself.

Working with Gradle Build Scripts

[78]

To get even more output and our DEBUG level logging messages, we must use
the --debug command-line option to invoke the logLevels task:

$ gradle --debug logLevels

...

06:23:16.578 [DEBUG] [org.gradle.api.internal.tasks.execution.
ExecuteActionsTaskExecuter] Executing actions for task ':logLevels'.

06:23:16.585 [DEBUG] [org.gradle.api.Task] debug: Most verbose logging
level.

06:23:16.590 [DEBUG] [org.gradle.api.Task] debug: Most verbose logging
level.

06:23:16.592 [INFO] [org.gradle.api.Task] info: Use for information
messages.

06:23:16.593 [INFO] [org.gradle.api.Task] info: Most verbose logging
level.

06:23:16.595 [LIFECYCLE] [org.gradle.api.Task] lifecycle: Progress
information messages

06:23:16.596 [LIFECYCLE] [org.gradle.api.Task] lifecycle: Most verbose
logging level.

06:23:16.598 [WARN] [org.gradle.api.Task] warn: Warning messages like
invalid configuration

06:23:16.599 [WARN] [org.gradle.api.Task] warn: Most verbose logging
level.

06:23:16.601 [QUIET] [org.gradle.api.Task] quiet: This is important but
not an error

06:23:16.602 [QUIET] [org.gradle.api.Task] quiet: Most verbose logging
level.

06:23:16.604 [ERROR] [org.gradle.api.Task] error: Use for errors

06:23:16.606 [ERROR] [org.gradle.api.Task] error: Most verbose logging
level.

06:23:16.607 [DEBUG] [org.gradle.api.internal.tasks.execution.
ExecuteAtMostOnceTaskExecuter] Finished executing task ':logLevels'

06:23:16.608 [DEBUG] [org.gradle.execution.DefaultTaskGraphExecuter]
Timing: Executing the DAG took 0.045 secs

06:23:16.611 [LIFECYCLE] [org.gradle.BuildResultLogger]

06:23:16.612 [LIFECYCLE] [org.gradle.BuildResultLogger] BUILD SUCCESSFUL

...

This time, we get a lot of messages and we really have to look closely for our own.
The output format of the logging has also changed; notice that while only the log
message was shown before, now the time, log level, and originating class for the
log message are also displayed.

Chapter 3

[79]

So, we know every Gradle project and task has a logger we can use. But we can
also explicitly create a logger instance with the Logging class. If, for example,
we define our own class and want to use it in a Gradle build, we can use the
getLogger() method of the Logging class to get a Gradle logger object. We
can use the extra lifecycle() and quiet() methods on this logger instance,
just like in projects and tasks.

We will now add a class definition in our build file and use an instance of this
class to see the output:

class Simple {
 private static final Logger logger = Logging.getLogger('Simple')

 int square(int value) {
 int square = value * value
 logger.lifecycle "Calculate square for ${value} = ${square}"
 return square
 }
}

logger.lifecycle 'Running sample Gradle build.'

task useSimple {
 doFirst {
 logger.lifecycle 'Running useSimple'
 }
 doLast {
 new Simple().square(3)
 }
}

We have used the logger of the project and task; in the class Simple, we use
Logging.getLogger() to create a Gradle logger instance. When we run our
script, we get the following output:

$ gradle useSimple

:useSimple

Running useSimple

Calculate square for 3 = 9

BUILD SUCCESSFUL

Total time: 1.605 secs

Working with Gradle Build Scripts

[80]

To see the originating class of the logger, we can use the --debug (or -d)
command-line option. Then we will see not only the time the message was
logged, but also the name of the logger:

$ gradle useSimple -d

...

06:48:58.130 [LIFECYCLE] [org.gradle.api.Project] Running sample Gradle
build.

...

06:49:45.395 [LIFECYCLE] [org.gradle.api.Task] Running useSimple

06:49:45.416 [LIFECYCLE] [Simple] Calculate square for 3 = 9

...

Notice that our project logger is named org.gradle.api.Project, the task
logger is named org.gradle.api.Task, and our logger in the Simple class
is named Simple.

Controlling output
Before we used the logger instance for logging messages, we used the println()
method. Gradle redirects the output sent to System.out—which is what we do
when we use println()—to the logger with the log level quiet. That is why we
get to see the println() output when we run a Gradle build. Gradle intercepts
the output and uses its logging support.

When we run the following very simple Gradle build with the --debug option,
we can see that Gradle has redirected the output to the QUIET log level:

println 'Simple logging message'

Let's see the output if we run the build:

$ gradle --debug

...

06:54:54.442 [QUIET] [system.out] Simple logging message

...

Gradle redirects standard error to log messages, with log level ERROR. This also
applies to classes we use from external libraries in our Gradle build. If the code
in those libraries uses standard output and error, Gradle will capture the output
and error messages and redirect them to the logger instance.

Chapter 3

[81]

We can configure this ourselves if we want to change which log level is used
for the redirected output and error messages. Every project and task has an
instance of the org.gradle.api.logging.LoggingManager class with the
name logging. LoggingManager has the captureStandardOutput() and
captureStandardError()methods that we can use to set the log level for
output and error messages. Remember that Gradle will, by default, use the
QUIET log level for output messages and the ERROR log level for error messages.
In the following script, we change the log level for output messages to INFO:

logging.captureStandardOutput LogLevel.INFO
println 'This message is now logged with log level info instead of
quiet'

task redirectLogging {
 doFirst {
 // Use default redirect log level quiet.
 println 'Start task redirectLogging'
 }
 doLast {
 logging.captureStandardOutput LogLevel.INFO
 println 'Finished task redirectLogging'
 }
}

First we run the build without any extra command-line options:

$ gradle redirectLogging

:redirectLogging

Start task redirectLogging

BUILD SUCCESSFUL

Total time: 2.291 secs

Notice that the println statement we have defined in the doFirst method of
our task is shown, but the output of the other println statements is not shown.
We redirected the output of those println statements to Gradle's logging with
log level INFO. The INFO log level is now shown by default.

Working with Gradle Build Scripts

[82]

Let's run the script again, but now we add the --info command-line option so we
can see all the output of our println statements:

$ gradle redirectLogging --info

Starting Build

Settings evaluated using empty settings file.

Projects loaded. Root project using build file '/chapter3/
loggingredirect.gradle'.

Included projects: [root project 'chapter3']

Evaluating root project 'chapter3' using build file '/chapter3/
loggingredirect.gradle'.

This message is now logged with log level info instead of quiet

All projects evaluated.

Selected primary task 'redirectLogging'

Tasks to be executed: [task ':redirectLogging']

:redirectLogging

Task ':redirectLogging' has not declared any outputs, assuming that it is
out-of-date.

Start task redirectLogging

Finished task redirectLogging

BUILD SUCCESSFUL

Total time: 1.646 secs

Using the Gradle wrapper
Normally, if we want to run a Gradle build, we must have Gradle installed on our
computer. Also, if we distribute our project to others and they want to build the
project, they must have Gradle installed on their computers. The Gradle wrapper
can be used to allow others to build our project even if they don't have Gradle
installed on their computers.

The wrapper is a batch script on the Microsoft Windows operating systems or shell
script on other operating systems that will download Gradle and run the build using
the downloaded Gradle.

By using the wrapper, we can make sure the correct Gradle version for the project
is used. We can define the Gradle version, and if we run the build via the wrapper
script file, the version of Gradle that we defined is used.

Chapter 3

[83]

Creating wrapper scripts
To create the Gradle wrapper batch and shell script, we must add a task to our
build. The type of task is org.gradle.api.tasks.wrapper.Wrapper. We set
the gradleVersion property to the Gradle version we want to use.

The following sample build file shows how we configure a Wrapper task:

task createGradleWrapper(type: Wrapper) {
 gradleVersion = '1.1'
}

Next, we can execute the createGradleWrapper task to generate the files from
the command line:

$ gradle createGradleWrapper

:createGradleWrapper

BUILD SUCCESSFUL

Total time: 5.938 secs

After the execution of the task, we have two script files: gradlew.bat and gradlew
in the root of our project directory. These scripts contain all the logic needed to run
Gradle. If Gradle is not downloaded yet, the Gradle distribution will be downloaded
and installed locally.

In the directory gradle/wrapper relative to our project directory we find the files
gradle-wrapper.jar and gradle-wrapper.properties. The gradle-wrapper.
jar file contains a couple of class files necessary to download and invoke Gradle.
The gradle-wrapper.properties file contains settings, such as specifying the
URL to download Gradle. The gradle-wrapper.properties file also contains the
Gradle version number. If a new Gradle version is released, we only have to change
the version in the gradle-wrapper.properties file and the Gradle wrapper will
download the new version, so we can use it to build our project.

All the generated files are now part of our project. If we use a version control system,
then we must add these files to the version control. Other people that check out our
project can use the gradlew scripts to execute tasks from the project. The specified
Gradle version is downloaded and used to run the build file.

We can even delete the createGradleWrapper task from our build file. If we want to
use another Gradle version, we can set the gradleVersion property in the gradle/
wrapper/gradle-wrapper.properties file.

Working with Gradle Build Scripts

[84]

Customizing the Gradle wrapper
We can change the names of the script files that are generated with the scriptFile
property of the Wrapper task. To change the name of the generated JAR and
properties files, we can change the jarFile property:

task createGradleWrapper(type: Wrapper) {
 gradleVersion = '1.1'
 scriptFile = 'startGradle'
 jarFile = 'gradle-bin'
}

To change the URL from which the Gradle version must be downloaded, we
can alter the distributionUrl property. For example, we could publish a fixed
Gradle version on our company intranet and use the distributionUrl property
to reference a download URL on our intranet. This way we can make sure all
developers in the company use the same Gradle version:

task createGradleWrapper(type: Wrapper) {
 gradleVersion = '1.1 '
 distributionUrl = 'http://intranet/downloads/gradle-custom-bin.
zip'
}

Summary
In this chapter we learned about the support that Gradle gives when working with
files. We saw how to create a file or directory and a collection of files and directories.
A file tree represents a hierarchical set of files.

We can add logging messages to our project and tasks and see the output when
we run a Gradle build. We learned how to use different log levels to influence how
much information is shown in the output. We also used LoggingManager to capture
standard output and error messages and redirect them to custom log levels.

We learned how we can use the Gradle wrapper to allow users to build our projects
even if they don't have Gradle installed. We learned how we can customize the
wrapper to download a specific version of Gradle and use it to run our build.

In the next chapter, we will create a Java project and use the Java plugin to add
a set of default tasks we can use to compile, test, and package our Java code.

Using Gradle for
Java Projects

We have seen how we can write tasks in a Gradle build and how we can execute
them, but we haven't seen how we can do real-life tasks such as compiling source
code or testing with Gradle.

In this chapter, we will learn how we can use the Gradle Java plugin to get
tasks for compiling and packaging a Java project. We will also see how Gradle's
build-by-convention features make it very easy to start and work with source code.

Using plugins
In Gradle, we can apply plugins to our project. A plugin basically adds extra
functionalities such as tasks and properties to our project. By using a plugin,
functionality is decoupled from the core Gradle build logic. We can write our
own plugins, but Gradle also ships with plugins that are ready out of the box.
For example, Gradle has a Java plugin. This plugin adds tasks for compiling,
testing, and packaging Java source code to our project.

The plugins that are packaged with a Gradle version are never updated or changed
for that version, so if new functionality is added to a plugin, a whole new Gradle
version will be released. In future versions of Gradle, this will change. This doesn't
apply for the plugins we write ourselves. We can release new versions of our own
plugins, independent of the Gradle version.

Using Gradle for Java Projects

[86]

Getting started
The Java plugin provides a lot of useful tasks and properties we can use for building
a Java application or library. If we follow the convention-over-configuration support
of the plugin, we don't have to write a lot of code in our Gradle build file to use it.
If we want to, we can still add extra configuration options to override the default
conventions defined by the plugin.

Let's start with a new build file and use the Java plugin. We only have to apply the
plugin for our build:

apply plugin: 'java'

And that's it! By just adding this simple line, we now have a lot of tasks we can use
to work with in our Java project. To see which tasks have been added by the plugin,
we run the tasks command on the command line and look at the output:

$ gradle tasks

:tasks

--

All tasks runnable from root project

--

Build tasks

assemble - Assembles all Jar, War, Zip, and Tar archives.

build - Assembles and tests this project.

buildDependents - Assembles and tests this project and all projects that
depend on it.

buildNeeded - Assembles and tests this project and all projects it
depends on.

classes - Assembles the main classes.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the main classes.

testClasses - Assembles the test classes.

Documentation tasks

javadoc - Generates Javadoc API documentation for the main source code.

Chapter 4

[87]

Help tasks

dependencies - Displays the dependencies of root project 'sample'.

help - Displays a help message

projects - Displays the sub-projects of root project 'sample'.

properties - Displays the properties of root project 'sample'.

tasks - Displays the tasks runnable from root project 'sample'
(some of the displayed tasks may belong to subprojects).

Verification tasks

check - Runs all checks.

test - Runs the unit tests.

Rules

Pattern: build<ConfigurationName>: Assembles the artifacts of a
configuration.

Pattern: upload<ConfigurationName>: Assembles and uploads the artifacts
belonging to a configuration.

Pattern: clean<TaskName>: Cleans the output files of a task.

To see all tasks and more detail, run with --all.

BUILD SUCCESSFUL

Total time: 0.911 secs

If we look at the list of tasks, we can see how many tasks are now available to
us that we didn't have before; all this just by adding a simple line to our build file.

We have several task groups with their own individual tasks that can be used.
We have tasks related to building source code and packaging in the Build tasks
section. The task javadoc is used to generate Javadoc documentation, and is in the
Documentation tasks section. The tasks for running tests and checking code quality
are in the Verification tasks section. Finally, we have several rule-based tasks to
build, upload, and clean artifacts or tasks in our Java project.

Using Gradle for Java Projects

[88]

The tasks added by the Java plugin are the visible part of the newly added
functionality to our project. But the plugin also adds a so-called convention
object to our project.

A convention object has several properties and methods, which are used by the
tasks of the plugin. These properties and methods are added to our project, and
can be accessed like normal project properties and methods. So with the convention
object, we can not only look at the properties used by the tasks in the plugin, but we
can also change the value of the properties to reconfigure certain tasks.

Using the Java plugin
To work with the Java plugin, we are first going to create a very simple Java source
file. We can then use the plugin's tasks to build the source file. You can make this
application as complex as you wish, but in order to stay on topic, we will make
this as simple as possible.

By applying the Java plugin, we must now follow some conventions for our project
directory structure. To build the source code, our Java source files must be in the
src/main/java directory, relative to the project directory. If we have non-Java
source files that need to be included in the JAR file, we must place them in the
directory src/main/resources. Our test source files need to be in the src/test/
java directory, and any non-Java source files needed for testing can be placed in
src/test/resources. These conventions can be changed if we want or need it, but
it is a good idea to stick to them so we don't have to write any extra code in our build
file, which could cause errors.

Our sample Java project we will write is a Java class that uses an external property
file to get a welcome message. The source file with the name Sample.java is located
in the src/main/java directory:

// File: src/main/java/gradle/sample/Sample.java
package gradle.sample;

import java.util.ResourceBundle;

/**
 * Read welcome message from external properties file
 * <code>messages.properties</code>.
 */
public class Sample {

 public Sample() {
 }

Chapter 4

[89]

 /**
 * Get <code>messages.properties</code> file
 * and read the value for welcome key.
 *
 * @return Value for welcome key
 * from <code>messages.properties</code>
 */
 public String getWelcomeMessage() {
 final ResourceBundle resourceBundle = ResourceBundle.
getBundle("messages");
 final String message = resourceBundle.getString("welcome");
 return message;
 }
}

In the code, we use ResourceBundle.getBundle() to read our welcome message.
The welcome message itself is defined in a properties file with the name messages.
properties, which will go in the src/main/resources directory:

File: src/main/resources/gradle/sample/messages.properties
welcome = Welcome to Gradle!

To compile the Java source file and process the properties file, we run the classes
task. Note that the classes task has been added by the Java plugin. This is a so-called
lifecycle task in Gradle. The classes task is actually dependent on two other
tasks—compileJava and processResources. We can see this task dependency
when we run the tasks command with the command-line option --all:

$ gradle tasks --all

...

classes - Assembles the main classes.

 compileJava - Compiles the main Java source.

 processResources - Processes the main resources.

...

Let's run the classes task from the command line:

$ gradle classes

:compileJava

:processResources

:classes

BUILD SUCCESSFUL

Total time: 3.301 secs

Using Gradle for Java Projects

[90]

Here we can see that the tasks compileJava and processResources are executed,
because the classes task depends on these tasks. The compiled class file and
properties file are now in the directories build/classes/main and build/
resources/main. The build directory is the default directory that Gradle
uses to build output files.

If we execute the classes task again, we notice that the tasks support the
incremental build feature of Gradle. As we haven't changed the Java source
file or the properties file, and the output is still present, all the tasks can be
skipped because they are up-to-date:

$ gradle classes

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

BUILD SUCCESSFUL

Total time: 2.212 secs

To package our class file and properties file, we invoke the jar task. This task is
also added by the Java plugin and depends on the classes task. This means that if
we run the jar task, the classes task is also executed. Let's try and run the jar task:

$ gradle jar

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar

BUILD SUCCESSFUL

Total time: 2.401 secs

The default name of the resulting JAR file is the name of our project. So if our
project is called sample, then the JAR file is called sample.jar. We can find the
file in the build/libs directory. If we look at the contents of the JAR file, we see
our compiled class file and the messages.properties file. Also, a manifest file is
added automatically by the jar task:

Chapter 4

[91]

$ jar tvf build/libs/sample.jar

 0 Tue Mar 13 09:08:32 CET 2012 META-INF/

 25 Tue Mar 13 09:08:32 CET 2012 META-INF/MANIFEST.MF

 0 Tue Mar 13 09:06:50 CET 2012 gradle/

 0 Tue Mar 13 09:06:50 CET 2012 gradle/sample/

 685 Tue Mar 13 09:06:50 CET 2012 gradle/sample/Sample.class

 89 Tue Mar 13 07:07:12 CET 2012 gradle/sample/messages.properties

We can also execute the assemble task to create the JAR file. The assemble task,
another lifecycle task, is dependent on the jar task and can be extended by other
plugins. We could also add dependencies on other tasks that create packages for
a project other than just the JAR file, such as a WAR file or ZIP archive file:

$ gradle assemble

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:assemble UP-TO-DATE

BUILD SUCCESSFUL

Total time: 2.321 secs

To start fresh and clean all the generated output from the previous tasks, we can use
the clean task. This task deletes the project build directory and all the generated files
in that directory. So if we execute the clean task from the command line, Gradle will
delete the build directory:

$ gradle clean

:clean

BUILD SUCCESSFUL

Total time: 2.059 secs

Using Gradle for Java Projects

[92]

Note that the Java plugin also added some rule-based tasks. One of them was
clean<TaskName>. We can use this task to remove the output files of a specific
task. The clean task deletes the complete build directory, but with
clean<TaskName>, we delete only the files and directories created by the named
task. For example, to clean the generated Java class files of the compileJava task,
we execute the cleanCompileJava task. Because this is a rule-based task, Gradle
will determine that everything after clean must be a valid task in our project. The
files and directories created by that task are then determined by Gradle and deleted:

$ gradle cleanCompileJava

:cleanCompileJava

BUILD SUCCESSFUL

Total time: 2.133 secs

Working with source sets
The Java plugin also adds a new concept to our project—source sets. A source set
is a collection of source files that are compiled and executed together. The files can
be Java source files or resource files. Source sets can be used to group together files
with a certain meaning in our project, without having to create a separate project. For
example, we can separate the location of source files that describe the API of our Java
project in a source set, and run tasks that only apply to the files in this source set.

Without any configuration, we already have the main and test source sets, which
are added by the Java plugin. For each source set, the plugin also adds these
three tasks: compile<SourceSet>Java, process<SourceSet>Resources, and
<SourceSet>Classes. When the source set is named main, we don't have to
provide the source set name when we execute a task. For example, compileJava
applies to the main source test, but compileTestJava applies to the test source set.

Each source set also has some properties to access the directories and files that
make up the source set. The following table shows the properties we can access
in a source set:

Chapter 4

[93]

Source set
property

Type Description

java org.gradle.
api.file.
SourceDirectorySet

The Java source files for this project.
Only files with the extension .java
are in this collection.

allJava SourceDirectorySet By default, it is the same as the java
property, so it contains all the Java
source files. Other plugins can add
extra source files to this collection.

resources SourceDirectorySet All the resource files for this source
set. This contains all the files in
the resources source directory,
excluding any files with the
extension .java.

allSource SourceDirectorySet By default, this is the combination
of the resources and Java properties.
It includes all the source files of this
source set, both resource and Java
source files.

output SourceDirectorySet The output files for the source files
in the source set. It contains the
compiled classes and processed
resources.

java.srcDirs Set<File> Directories with Java source files.
resources.
srcDirs

Set<File> Directories with the resource files
for this source set.

output.
classesDir

File The output directory with the
compiled class files for the Java
source files in this source set.

output.
resourcesDir

File The output directory with the
processed resource files from the
resources in this source set.

name String Read-only value with the name
of the source set.

Using Gradle for Java Projects

[94]

We can access these properties via the sourceSets property of our project.
In the following example, we will create a new task to display values for
several properties:

apply plugin: 'java'

task sourceSetJavaProperties << {
 sourceSets {
 main {
 println "java.srcDirs = ${java.srcDirs}"
 println "resources.srcDirs = ${resources.srcDirs}"
 println "java.files = ${java.files.name}"
 println "allJava.files = ${allJava.files.name}"
 println "resources.files = ${resources.files.name}"
 println "allSource.files = ${allSource.files.name}"
 println "output.classesDir = ${output.classesDir}"
 println "output.resourcesDir = ${output.resourcesDir}"
 println "output.files = ${output.files}"
 }
 }
}

When we run the task sourceSetJavaProperties, we get the following output:

$ gradle sourceSetJavaProperties

:sourceSetJavaProperties

java.srcDirs = [/chapter4/sample/src/main/java]

resources.srcDirs = [/chapter4/sample/src/main/resources]

java.files = [Sample.java, SampleApp.java]

allJava.files = [Sample.java, SampleApp.java]

resources.files = [messages.properties]

allSource.files = [messages.properties, Sample.java, SampleApp.java]

output.classesDir = /chapter4/sample/build/classes/main

output.resourcesDir = /chapter4/sample/build/resources/main

output.files = [/chapter4/sample/build/classes/main, /chapter4/sample/
build/resources/main]

BUILD SUCCESSFUL

Total time: 2.82 secs

Chapter 4

[95]

Creating a new source set
We can create our own source set in a project. A source set contains all the source
files that are related to each other. In our example, we will add a new source set
to include a Java interface. Our Sample class will then implement the interface,
but because we use a separate source set, we can later use this to create a separate
JAR file with only the compiled interface class. We will name the source set api,
because the interface is actually the API of our example project that we can share
with other projects.

To define this source set, we only have to put the name in the sourceSets
property of the project:

apply plugin: 'java'

sourceSets {
 api
}

Gradle will create three new tasks based on this source set—apiClasses,
compileApiJava, and processApiResources. We can see these tasks after
we execute the tasks command:

$ gradle tasks --all

...

apiClasses - Assembles the api classes.

 compileApiJava - Compiles the api Java source.

 processApiResources - Processes the api resources.

...

We have created our Java interface in the directory src/api/java, which is
the source directory for the Java source files for the api source set. The following
code allows us to see the Java interface:

// File: src/api/java/gradle/sample/ReadWelcomeMessage.java
package gradle.sample;

/**
 * Read welcome message from source and return value.
 */
public interface ReadWelcomeMessage {

 /**
 * @return Welcome message
 */
 String getWelcomeMessage();
}

Using Gradle for Java Projects

[96]

To compile the source file, we can execute the task compileApiJava or apiClasses:

$ gradle apiClasses

:compileApiJava

:processApiResources UP-TO-DATE

:apiClasses

BUILD SUCCESSFUL

Total time: 3.507 secs

The source file is compiled into the build/classes/api directory.

We will now change the source code of our Sample class and implement the
ReadWelcomeMessage interface:

// File: src/main/java/gradle/sample/Sample.java
package gradle.sample;

import java.util.ResourceBundle;

/**
 * Read welcome message from external properties file
 * <code>messages.properties</code>.
 */
public class Sample implements ReadWelcomeMessage {

 public Sample() {
 }

 /**
 * Get <code>messages.properties</code> file and read
 * value for welcome key.
 *
 * @return Value for welcome key from <code>messages.
properties</code>
 */
 public String getWelcomeMessage() {
 final ResourceBundle resourceBundle = ResourceBundle.
getBundle("messages");
 final String message = resourceBundle.getString("welcome");
 return message;
 }
}

Chapter 4

[97]

Next, we run the classes task to recompile our changed Java source file:

$ gradle classes

:compileJava

/chapter4/sample/src/main/java/gradle/sample/Sample.java:10: cannot find
symbol

symbol: class ReadWelcomeMessage

public class Sample implements ReadWelcomeMessage {

 ^

1 error

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ':compileJava'.

> Compile failed; see the compiler error output for details.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or
--debug option to get more log output.

BUILD FAILED

Total time: 3.325 secs

We get a compilation error! The Java compiler cannot find the ReadWelcomeMessage
interface. But we just ran the apiClasses task and compiled the interface without
errors. To fix this, we must define a dependency between the classes and
apiClasses tasks. The classes task is dependent on the apiClasses tasks.
First, the interface must be compiled, and then the class that implements
the interface.

Next, we must add the output directory with the compiled interface class file, to
the compileClasspath property of the main source set. Once we have done that,
we know for sure that the Java compiler for compiling the Sample class picks up
the compiled class file.

Using Gradle for Java Projects

[98]

To do this, we will change the build file and add the task dependency between
the two tasks and the main source set configuration:

apply plugin: 'java'

sourceSets {
 api
 main {
 compileClasspath = compileClasspath + files(api.output.
classesDir)
 }
}

classes.dependsOn apiClasses

Now we can run the classes task again, without errors:

$ gradle classes

:compileApiJava

:processApiResources UP-TO-DATE

:apiClasses

:compileJava

:processResources

:classes

BUILD SUCCESSFUL

Total time: 3.703 secs

Custom configuration
If we use Gradle for an existing project, we might have a different directory structure
than the default structure defined by Gradle, or it may be that we want to have a
different structure for another reason. We can account for this by configuring the
source sets and using different values for the source directories.

Suppose that we have a project with the following source directory structure:

+ resources
| |
| + java
| |
| + test

Chapter 4

[99]

|
+ src
| |
| + java
|
+ test
 |
 + unit
 | |
 | + java
 |
 + integration
 |
 + java

We will need to reconfigure the main and test source sets, but we must
also add a new integration-test source set. The following code reflects
the directory structure for the source sets:

apply plugin: 'java'

sourceSets {
 main {
 java {
 srcDir 'src/java'
 }
 resources {
 srcDir 'resources/java'
 }
 }
 test {
 java {
 srcDir 'test/unit/java'
 }
 resources {
 srcDir 'resources/test'
 }
 }
 'integration-test' {
 java {
 srcDir 'test/integration/java'
 }
 resources {
 srcDir 'resources/test'
 }
 }
}

Using Gradle for Java Projects

[100]

Notice how we must put the name of the integration-test source set in quotes;
this is because we use a hyphen in the name. Gradle then converts the name of the
source set into integrationTest (without the hyphen and with a capital T). To
compile, for example, the source files of the integration test source set, we use
the compileIntegrationTestJava task.

Working with properties
We have now already learned that the Java plugin adds tasks and source sets to
our Gradle project; however, we also get a lot of new properties that we can use.
Custom properties of a plugin are set in a Convention object of type org.gradle.
api.plugins.Convention. A Convention object is used by a plugin to expose
properties and methods that we can use in our project. The Convention object of the
plugin is added to the convention property of a project. The convention property
of a Gradle project is a container for all the Convention objects from the plugins.

We can access the properties from the plugin's Convention object directly as project
properties, or we can specify a complete path to the Convention object of the plugin,
to get to a property or invoke a method.

For example, the sourceSets property is a property of the Convention object of the
Java plugin. With the following task, showConvention, we see the different ways we
have to access that property:

task showConvention << {
 println sourceSets.main.name
 println project.sourceSets.main.name
 println project.convention.plugins.java.sourceSets.main.name
}

To see all the properties available for us, we must invoke the properties task
from the command line. The following output shows part of the output from the
properties task:

$ gradle properties

...

targetCompatibility: 1.5

test: task ':test'

testClasses: task ':testClasses'

testReportDir: /chapter4/sample/build/reports/tests

Chapter 4

[101]

testReportDirName: tests

testResultsDir: /chapter4/sample/build/test-results

testResultsDirName: test-results

version: unspecified

...

If we look through the list, we see a lot of properties that we can use to redefine the
directories where output files of the compile or test tasks are stored. The following
table shows the directory properties:

Property name Default value Description
distDirName distributions The directory name relative

to the build directory, to store
distribution files.

libsDirName libs The directory name to store
generated JAR files, relative to
the build directory.

dependencyCacheDirName dependency-
cache

Name of directory for storing
cached information about
dependencies, relative to the
build directory.

docsDirName docs Name of the directory for storing
generated documentation,
relative to the build directory.

testReportDirName tests The directory name relative to
the build directory, to store test
reports.

testResultsDirName test-results Store test result XML files,
relative to the build directory.

The Java plugin also adds other properties to our project. These properties can be
used to set the source and target compatibility of the Java version for compiling
the Java source files, or to set the base filename for the generated JAR files.

Using Gradle for Java Projects

[102]

The following table shows the convention properties of the Java plugin:

Property name Type Default value Description
archives
BaseName

String Name of the
project

The base file name
to use for archives
created by archive
tasks such as jar.

source
Compatibility

String,
Number,
JavaVersion,
Object

Java version of
JDK used to
run Gradle

The Java version
compatibility to use
when compiling
Java source files
with the compile
task.

target
Compatibility

String,
Number,
JavaVersion,
Object

Value of source
Compatibility

The version of Java
to generate class
files for.

sourceSets SourceSet
Container

- Source sets for the
project.

manifest Manifest Empty manifest Manifest to include
in all JAR files.

metaInf List Empty list The list of files
to include in
the META-INF
directory of all the
JAR files created in
the project.

In our example project, we already saw that the generated JAR file was named after
the project name, but with the archivesBaseName property, we can change that. We
can also change the source compatibility to Java 6 for our project. Finally, we can also
change the manifest that is used for the generated JAR file. The following build file
reflects all the changes:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

sourceCompatibility = JavaVersion.VERSION_1_6 // Or '1.6' or 6

Chapter 4

[103]

manifest = manifest {
 attributes(
 'Implementation-Version' : version,
 'Implementation-Title' : 'Gradle Sample'
)
}

// Need to explicitly set manifest on jar task,
// but should be automatic.
jar.manifest.from manifest
...

If we now invoke the assemble task to create our JAR file and look into the build/
libs directory, we can see that the JAR file is now named gradle-sample-1.0.jar:

$ gradle assemble

:compileApiJava

:processApiResources

:apiClasses

:compileJava

:processResources

:classes

:jar

:assemble

BUILD SUCCESSFUL

Total time: 4.022 secs

$ ls build/libs

gradle-sample-1.0.jar

If we run the same task with the command-line option --info to set the info
log level, we see in the output that the Java 6 compiler is used:

$ gradle --info cleanCompileJava assemble

...

Compiling with JDK 6 Java compiler API.

...

Using Gradle for Java Projects

[104]

To see the contents of the generated manifest file, we first extract the file from the
JAR file and then look at the contents:

$ jar xvf build/libs/gradle-sample-1.0.jar

 inflated: META-INF/MANIFEST.MF

$ cat META-INF/MANIFEST.MF

Manifest-Version: 1.0

Implementation-Version: 1.0

Implementation-Title: Gradle Sample

Creating documentation
To generate Javadoc documentation, we must use the javadoc task that is of type
org.gradle.api.tasks.javadoc.Javadoc. The task generates documentation for
the Java source files in the main source set. If we want to generate documentation for
the source sets in our project, we must configure the javadoc task or add an extra
javadoc task to our project.

Note that, in our project, we have an api and main source set with the Java source files.
If we want to generate documentation for both the source sets, we have to configure
the javadoc task in our project. The source property of the javadoc task is, by
default, set to sourceSets.main.allJava. If we add sourceSets.api.allJava
to the source property, our interface file is also processed by the javadoc task:

apply plugin: 'java'
...
javadoc {
 source sourceSets.api.allJava
}
...

Next, we can run the javadoc task, and the documentation is generated and put into
the build/docs/javadoc directory:

$ gradle javadoc

:compileApiJava UP-TO-DATE

:processApiResources UP-TO-DATE

:apiClasses UP-TO-DATE

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:javadoc

Chapter 4

[105]

BUILD SUCCESSFUL

Total time: 3.425 secs

We can set more properties on the javadoc task. For example, we can set a title
for the generated documentation with the title property. The default value is
the name of the project followed by the project version number, if available.

To change the destination directory, we can set the destinationDir property
of the javadoc task to the directory we want.

We can also use the options property to define a lot of properties we know from
the Java SDK javadoc tool. The following example shows how we can set some
of the options for the javadoc task in our project:

apply plugin: 'java'
...
javadoc {
 source sourceSets.api.allJava
 title = 'Gradle Sample Project'
 options.links = ['http://docs.oracle.com/javase/6/docs/api/']
 options.footer = "Generated on ${new Date().format('dd MMM
yyyy')}"
 options.header = "Documention for version ${project.version}"
}
...

Assembling archives
If we want to package the output of the new api source set in our JAR file, we must
define a new task ourselves. Gradle doesn't provide some magic to do this for us
automatically; luckily, the task itself is very simple:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

sourceSets {
 api
}

task apiJar(type: Jar) {
 appendix = 'api'
 from sourceSets.api.output
}
...

Using Gradle for Java Projects

[106]

The task apiJar is a Jar task. We define the appendix property that is used to
generate the final filename of the JAR file. We use the from() method to point to
the output directory of our api source set, so all generated output is included in
the JAR file. When we run the task apiJar, a new JAR file gradle-sample-api-
1.0.jar is generated in the build/libs directory:

$ gradle apiJar

:compileApiJava UP-TO-DATE

:processApiResources UP-TO-DATE

:apiClasses UP-TO-DATE

:apiJar

BUILD SUCCESSFUL

Total time: 2.998 secs

The base name of the JAR file is the project name, which is similar to one for the jar
task. If we look at the contents, we see our compiled ReadWelcomeMessage class file:

$ jar tvf build/libs/sample-api.jar

 0 Tue Mar 13 11:27:10 CET 2012 META-INF/

 25 Tue Mar 13 11:27:10 CET 2012 META-INF/MANIFEST.MF

 0 Tue Mar 13 11:17:50 CET 2012 gradle/

 0 Tue Mar 13 11:17:50 CET 2012 gradle/sample/

 182 Tue Mar 13 11:17:50 CET 2012 gradle/sample/ReadWelcomeMessage.
class

Note also that we didn't define a task dependency between the tasks apiJar and
apiClasses, but when we ran the apiJar task, Gradle automatically ran the
apiClasses task. This happened because we used the sourceSets.api.output
property to define which files needed to be included in the JAR file; Gradle noticed
this and determined which task is responsible for creating the content in the
sourceSets.api.output directory. The apiClasses task is the task that compiles
the Java source files, and processes the resources into the build directory, so Gradle
will first invoke the apiClasses task before the apiJar task.

Chapter 4

[107]

Summary
In this chapter, we have learned about the support for a Java project in Gradle. With
just a simple line needed to apply the Java plugin, we get masses of functionality,
which we can use for our Java code. We can compile our source files, package
the compiled code into a JAR file, and generate documentation.

In the next chapter, we will see how we can add dependencies to external libraries.
We will learn how to configure repositories, and how we can organize our
dependencies with configurations.

Dependency Management
When we develop our code, we usually use third-party or open source libraries.
These libraries need to be available in the classpath of the compiler, otherwise
we will get errors and our build will fail. Gradle provides support for dependency
management, so we can define our dependencies in our build file. Gradle will then
take care of the necessary configuration for our various tasks.

In this chapter, we will learn how we can use dependency management in our
builds. We will see how to organize dependencies with configurations. We will
also learn about repositories that host dependency artifacts, their dependencies,
and how we can handle different repository layouts.

Then we will define dependencies using Gradle syntax, for modules with
version information.

Dependency configuration
Java has no real support for working with versioned libraries as dependencies.
We cannot express in Java whether our class depends on lib-1.0.jar or lib-
2.0.jar, for example. There are some open source solutions that deal with
dependencies and allow us to express whether our Java code depends on lib-
1.0.jar or lib-2.0.jar. The most popular are Maven and Apache Ivy. Maven
is a complete build tool and has a mechanism for dependency management. Ivy
is only about dependency management.

Both tools support repositories where versioned libraries are stored, together
with metadata about those libraries. A library can have dependencies on other
libraries and is described in the metadata of the library. The metadata is described
in descriptor XML files. Ivy fully supports Maven descriptor files and repositories;
it also adds some extra functionality. So with Ivy, you get what you would with
Maven, and then some more. That is why Gradle uses the Ivy API under the hood
to do dependency management. Gradle also adds some extra sugar on top of Ivy,
so we can define and use dependencies in a very flexible way.

Dependency Management

[110]

In a Gradle build file, we group dependencies together in a configuration.
A configuration has a name, and configurations can extend each other. With
a configuration, we can make logical groups of dependencies. For example,
we can create a javaCompile configuration to include dependencies needed
to compile the Java code. We can add as many configurations to our build as
we want to. We don't define our dependencies directly in the configuration.
A configuration, as with a label, can be used when we define a dependency.

Every Gradle build has a ConfigurationContainer object. This object is accessible
via the Project property containers. We can use a closure to configure the container
with Configuration objects. Each Configuration object has at least a name, but
we can change more properties. We can set a resolution strategy, if a configuration
has version conflicts with dependencies, or we can change the visibility of a
configuration so that it will not be visible outside of our project.

In the following example, we create a new configuration with the name commonsLib
to hold our dependencies and a configuration mainLib that extends commonsLib.
The extended configuration mainLib gets all settings and dependencies from
commonsLib, and we can assign extra dependencies as well:

configurations {
 commonsLib {
 description = 'Common libraries'
 }
 mainLib {
 description = 'Main libraries'
 extendsFrom commonsLib
 }
}

println configurations['mainLib'].name
println configurations.commonsLib.name

The output of the build shows the names of the configurations:

$ gradle –q

commonsLib

mainLib

Chapter 5

[111]

Many plugins add new configurations to ConfigurationContainer. We used the
Java plugin in the previous chapter, which added four configurations to our project.
With the built-in task dependencies, we can get an overview of defined dependencies
and configurations for a project.

The following build script uses the Java plugin:

apply plugin: 'java'

We get the following output if we execute the dependencies task:

$ gradle –q dependencies

--

Root project

--

archives - Configuration for archive artifacts.

No dependencies

compile - Classpath for compiling the main sources.

No dependencies

default - Configuration for default artifacts.

No dependencies

runtime - Classpath for running the compiled main classes.

No dependencies

testCompile - Classpath for compiling the test sources.

No dependencies

testRuntime - Classpath for running the compiled test classes.

No dependencies

Dependency Management

[112]

Notice how we already have six configurations in our project. The following table
shows the configuration and which tasks use the configuration:

Configuration Extends Used by task Description
compile - compileJava Dependencies needed at

compile time to compile
the source files.

runtime compile - Dependencies for runtime
of the application, but not
needed for compilation.

testCompile compile compileTestJava Dependencies to compile
test source files.

testRuntime testCompile test All dependencies needed
to run the tests.

archives - uploadArchives Contains artifacts, such as JAR
files created by the project.

default runtime - Default configuration contains
all runtime dependencies.

If our code has a dependency on a library, we can set the dependency with the
compile configuration. The dependency is then automatically available in the
runtime, testCompile, testRuntime, and default configurations.

Repositories
Dependencies are usually stored in some kind of repository. A repository has a
layout that defines a pattern for the path of a versioned library module. Gradle
knows, for example, the layout of a Maven repository. Ivy repositories can have
customized layouts, and with Gradle, we can configure a customized layout. The
repository can be accessible via the file system, HTTP, SSH, or other protocols.

We can declare several repository types in the Gradle build file. Gradle provides
some preconfigured repositories, but it is also very easy to use a custom Maven or
Ivy repository. We can also declare a simple file system repository to be used for
resolving and finding dependencies. The following table shows the preconfigured
and custom repositories we can use:

Chapter 5

[113]

Repository type Description
Maven repository Maven layout repository on a remote

computer or file system.
Maven central repository Preconfigured Maven layout

repository to search for dependencies
in the Maven central repository.

Maven local repository Preconfigured Maven repository
that finds dependencies in the local
Maven repository.

Ivy repository Ivy repository that can be located
on a local or remote computer.

Flat directory repository Simple repository on the local
file system of the computer or
a network share.

We define a repository with the repositories() method. This method accepts
a closure that is used to configure an org.gradle.api.artifacts.dsl.
RepositoryHandler object.

Adding Maven repositories
A lot of Java projects use Maven as a build tool and for Maven's dependency
management features. A Maven repository stores libraries with version information
and metadata described in a descriptor XML file. The layout of a Maven repository is
fixed and follows the pattern someroot/[organization]/[module]/[revision]/
[module]-[revision].[ext]. The organization section is split into subfolders
based on the dots used in the organization name. For example, if the organization
name is org.gradle, an org folder with the subfolder gradle needs to be in the
Maven repository. A JAR library with the organization name org.gradle, module
name gradle-api, and revision 1.0 is resolved via the path someroot/org/gradle/
gradle-api/1.0/gradle-api-1.0.jar.

The Maven central repository is located at http://repo1.maven.org/maven2 and
contains a lot of libraries. Many open source projects deploy their artifacts to Maven's
central repository. We can use the mavenCentral() method in the configuration
closure for the repositories() method. The following example
is a build file where we have defined the Maven central repository:

repositories {
 mavenCentral()
}

http://repo1.maven.org/maven2

Dependency Management

[114]

If we have used Maven before on our computer, there is a good chance we have a
local Maven repository. Maven will use a hidden folder in our home directory to
store downloaded dependency libraries. We can add this local Maven repository,
with the method mavenLocal(), to the list of repositories. We can add the Maven
local repository to our build file, as follows:

repositories {
 mavenLocal()
 mavenCentral()
}

Both the central and local Maven repositories are preconfigured Maven repositories.
We can also add a custom repository that follows the Maven layout. For example,
our company can have a Maven repository available via the intranet. We define
the URL of the Maven repository with the maven() or mavenRepo() methods.

The example build file uses both methods to add two new Maven repositories
available through our intranet:

repositories {
 maven {
 // Name is optional. If not set url property is used
 name = 'Main Maven repository'
 url = 'http://intranet/repo'
 }

 mavenRepo(name: 'Snapshot repository', url: 'http://intranet/
snapshots')
}

Both methods configure a repository via a combination of a closure and method
arguments. Sometimes we must access a Maven repository that stores the metadata
in descriptor XML files, but the actual JAR files are in a different location. To support
this scenario, we must set the property artifactUrls and assign the addresses of
the servers that store the JAR files:

repositories {
 maven {
 url: 'http://intranet/mvn'
 artifactUrls 'http://intranet/jars'
 artifactUrls 'http://intranet/snapshot-jars'
 }
}

Chapter 5

[115]

To access a Maven repository with basic authentication, we can set the credentials
when we define the repository:

repositories {
 maven(name: 'Secured repository') {
 credentials {
 username = 'username'
 password = 'password'
 }
 url = 'http://intranet/repo'
 }
}

It is not a good idea to store the username and password as plain text in the build
file; this is because anyone can read our password, if stored in plain text. It is better
if we define the properties in a file gradle.properties, in the Gradle user home
directory, apply the correct security constraints on the property file, and use those
properties in our build file:

repositories {
 maven(name: 'Secured repository') {
 credentials {
 // Define properties usernameSecuredRepo
 // and passwordSecuredRepo in
 // $USER_HOME/.gradle/gradle.properties
 username = usernameSecuredRepo
 password = passwordSecuredRepo
 }
 url = 'http://intranet/repo'
 }
}

Adding Ivy repositories
An Ivy repository has a customizable layout; this means that there is no single
predefined layout as with a Maven repository. The default layout for an Ivy
repository has the pattern someroot/[organization]/[module]/[revision]/
[type]s/[artifact].[ext]. The name of the organization is not split into
subfolders, as with the Maven layout. So, our module gradle with the
organization name org.gradle and artifact gradle-api with revision 1.0 is
resolved via the path someroot/org.gradle/gradle/1.0/jars/gradle-api.jar.

Dependency Management

[116]

We use the same resources() method to configure an Ivy repository. We use
the method ivy() to configure the settings for an Ivy repository. We define the
URL of the repository and optionally, a name:

repositories {
 ivy(url: 'http://intranet/ivy-repo', name: 'Our repository')

 ivy {
 url = 'http://intranet/ivy-snapshots'
 }
}

If our Ivy repository has a Maven layout, we can set the layout property to maven. We
can use the same property to define a custom layout for a repository. We define the
patterns that are used to resolve the descriptor XML files and the actual library files.

The following table shows the different layout names we can use and the default
patterns for the preconfigured layouts:

Layout name Pattern Ivy descriptors Pattern artifacts
gradle someroot/[organization]/

[module]/[revision]/ivy-
[revision].xml

someroot/[organization]/
[module]/[revision]/
[artifact]-[revision]
(-[classifier])(.[ext])

maven someroot/[organization]/
[module]/[revision]/ivy-
[revision].xml

someroot/[organization]/
[module]/[revision]/
[artifact]-[revision]
(-[classifier])(.[ext])

pattern Custom Custom

The example build file uses the preconfigured layout names gradle and maven
and also a custom pattern:

repositories {
 ivy {
 url = 'http://intranet/ivy-snapshots'
 layout = 'maven'
 }

 ivy {
 url = 'http://intranet/repository'
 layout = 'gradle'
 }

Chapter 5

[117]

 ivy {
 url = 'http://intranet/custom'
 layout('pattern') {
 // Pattern to resolve Ivy descriptor files.
 ivy '[module]/[revision]/ivy.xml'

 // Pattern to resolve files.
 artifact '[module]/[revision]/[artifact](.[ext])'
 }
 }
}

Instead of using the layout() method to define a custom pattern, we can use
the methods ivyPattern() and artifactPattern() to define the patterns
for the Ivy repository:

repositories {
 ivy {
 url = 'http://intranet/custom'
 ivyPatterns '[module]/[revision]/ivy.xml'
 artifactPatterns '[module]/[revision]/[artifact](.[ext])'
 }
}

To access an Ivy repository that is secured with basic authentication, we must
pass our credentials. Just like with the secured Maven repository, it is best to
store the username and password as properties in the file $USER_HOME/.gradle/
gradle.properties:

repositories {
 ivy {
 credentials {
 username = usernameFromGradleProperties
 password = passwordFromGradleProperties
 }
 url = 'http://intranet/custom'
 ivyPatterns '[module]/[revision]/ivy.xml'
 artifactPatterns '[module]/[revision]/[artifact](.[ext])'
 artifactPatterns '[module]/[revision]/[artifact](.[ext])'
 }
}

Dependency Management

[118]

Adding a local directory repository
To use a simple repository on the local file system or a network share mapped as
local storage, we must use the flatDir() method. The flatDir() methods accepts
arguments or a closure to configure the correct directory. We can assign a single
directory or multiple directories.

Gradle will resolve files in the configured directory using the first match it finds
with the following patterns:

• [artifact]-[version].[ext]

• [artifact]-[version]-[classifier].[ext]

• [artifact].[ext]

• [artifact]-[classifier].[ext]

The following example build file defines a flat directory repository:

repositories {
 flatDir(dir: '../lib', name: 'libs directory')

 flatDir {
 dirs '../project-files', '/volumes/shared-libs'
 name = 'All dependency directories'
 }
}

Defining dependencies
We learned how to use dependency configurations to group together dependencies;
we saw how we must define repositories so dependencies can be resolved, but we
haven't yet learned how to define the actual dependencies. We define dependencies
in our build project with the dependencies{} script block. We define a closure to
pass to the dependencies{} script block, with the configuration of the dependency.

We can define different types of dependencies. The following table shows the types
we can use:

Dependency type Method Description
External module dependency - A dependency on an external

module or library in a
repository.

Project dependency project() Dependency on another Gradle
project.

Chapter 5

[119]

Dependency type Method Description
File dependency files(),

fileTree()

Dependency on a collection of
files on the local computer.

Client module dependency module() A dependency on an external
module where the artifacts are
stored in a repository but the
meta information about the
module is in the build file. We
can override meta information
using this type of dependency.

Gradle API dependency gradleApi() Dependency on the Gradle API
of the current Gradle version.
We use this dependency when
we develop Gradle plugins
and tasks.

Local Groovy dependency localGroovy() Dependency on the Groovy
libraries used by the current
Gradle version. We use this
dependency when we develop
Gradle plugins and tasks.

Using external module dependencies
The most used dependency is the external module dependency. We can define
a module dependency in different ways. For example, we can use arguments to
set a group name, module name, and revision of the dependency. Or, we can use
the String notation to set the group name, module name, and revision in a single
string. We always assign a dependency to a specific dependency configuration. The
dependency configuration must be defined by ourselves or by a plugin we have
applied to our project.

In the following example build file, we will use the Java plugin, so we get a compile
and runtime dependency configuration. We will also assign several external module
dependencies to each configuration using the different syntax rules:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {

Dependency Management

[120]

 compile group: 'org.springframework', name: 'spring-core',
version: '3.1.1.RELEASE'

 runtime 'org.springframework:spring-aop:3.1.1.RELEASE'
}

Remember that a Gradle build file is a Groovy script file, so we can define variables
to set values and use them in the dependencies{} script block configuration closure.
If we rewrite the previous build file, we get:

apply plugin: 'java'

repositories {
 mavenCentral()
}

ext {
 springVersion = '3.1.1.RELEASE'
 springGroup = 'org.springframework'
}

dependencies {
 compile group: springGroup, name: 'spring-core', version:
springVersion

 runtime "$springGroup:spring-aop:$springVersion"
}

Gradle will look for the descriptor file in the Maven central repository. If the
file is found, the artifact of the module and the dependencies of the module are
downloaded and made available to the dependency configuration.

To see the dependencies and the transitive dependencies, we invoke the built-in task
dependencies. We get the following output:

$ gradle –q dependencies

…

compile - Classpath for compiling the main sources.

\--- org.springframework:spring-core:3.1.1.RELEASE [default]

 +--- org.springframework:spring-asm:3.1.1.RELEASE
[compile,master,runtime]

 \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]

…

runtime - Classpath for running the compiled main classes.

+--- org.springframework:spring-core:3.1.1.RELEASE [default]

Chapter 5

[121]

| +--- org.springframework:spring-asm:3.1.1.RELEASE
[compile,master,runtime]

| \--- commons-logging:commons-logging:1.1.1 [compile,master,runtime]

\--- org.springframework:spring-aop:3.1.1.RELEASE [default]

 +--- org.springframework:spring-core:3.1.1.RELEASE
[compile,runtime,master] (*)

 +--- org.springframework:spring-asm:3.1.1.RELEASE
[compile,master,runtime] (*)

 +--- aopalliance:aopalliance:1.0 [compile,master,runtime]

 \--- org.springframework:spring-beans:3.1.1.RELEASE
[compile,master,runtime]

 \--- org.springframework:spring-core:3.1.1.RELEASE
[compile,master,runtime] (*)

…

(*) - dependencies omitted (listed previously)

To only download the artifact of an external dependency and not the transitive
dependencies, we can set the property transitive to false, for the dependency.
We can set the property with a closure or as an extra property in the argument list:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 // Configure transitive property with closure.
 compile('org.slf4j:slf4j-simple:1.6.4') {
 transitive = false
 }

 // Or we can use the transitive property
 // as method argument.
 compile group: 'org.slf4j', name: 'slf4j-simple', version:
'1.6.4', transitive: false
}

We can also exclude some transitive dependencies, with the exclude() method.
Gradle will look at the descriptor file of the module and exclude any dependencies
that we have added with the exclude() method.

Dependency Management

[122]

For example, in the following build file we exclude the transitive dependency org.
slf4j:sl4j-api:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 // Configure transitive property with closure.
 compile('org.slf4j:slf4j-simple:1.6.4') {
 exclude 'org.slf4j:slf4j-api'
 }
}

To only get an artifact of an external module dependency we can use the "artifact-
only" notation. We must also use this notation when a repository doesn't have a
module descriptor file and we want to get the artifact. We must add an @ symbol
before the extension of the artifact. Gradle will not look at the module descriptor
file, if available, when we use this notation:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 // Use artifact-only notation with @ symbol.
 runtime('org.slf4j:slf4j-simple:1.6.4@jar')

 // Or we can use the ext property
 // as method argument.
 runtime group: 'org.slf4j', name: 'slf4j-simple', version:
'1.6.4', ext: 'jar
}

We can even set the transitive behavior on a complete configuration. Each
configuration has a property transitive. We can set the value to true or
false to change the transitive behavior for each dependency we define in
the configuration. In the following sample build file, we set the transitive
property on the runtime configuration:

Chapter 5

[123]

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile('org.slf4j:slf4j-simple:1.6.4')
}

configurations.compile.transitive = false

In a Maven repository, we can use classifiers for a dependency. For example, the
module descriptor file defines the classifiers jdk16 and jdk15 for different JDK
versions of the library. We can use the classifier in a Gradle dependency definition
to select the dependency with the given classifier:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 // Use artifact-only notation with @ symbol
 // together with classifier jdk16.
 compile('sample:simple:1.0:jdk16@jar')

 // Or we can use the classifier property
 // as method argument.
 compile group: 'sample', name: 'simple', version: '1.0',
classifier: 'jdk16'
}

The module descriptor of a module in a Maven repository can only have one artifact,
but in an Ivy repository, we can define multiple artifacts for a single module. Each set
of artifacts is grouped together in a configuration. The default configuration contains
all artifacts belonging to the module. If we don't specify the configuration property
when we define the dependency for an Ivy module, the default configuration is used.
We must specify the configuration property if we want to use artifacts belonging
to that specific configuration:

apply plugin: 'java'

repositories {

Dependency Management

[124]

 ivy {
 url = 'http://intranet/custom'
 ivyPatterns '[module]/[revision]/ivy.xml'
 artifactPatterns '[module]/[revision]/[artifact](.[ext])'
 }
}

dependencies {
 // Use configuration property in method arguments.
 testCompile group: 'sample', name: 'logging', version: '1.0',
configuration: 'test'

 // Or we use a closure to set the property.
 testCompile('sample:logging:1.0') {
 configuration = 'test
 }
}

Using project dependencies
Gradle projects can be dependent on each other. To define such a dependency we use
the project() method and use the name of the other project as an argument. Gradle
will look for a default dependency configuration in that project and use that as a
dependency. We can use the configuration property to use different dependency
configurations as a dependency for each project:

apply plugin: 'java'

dependencies {
 compile project(':projectA')

 compile project(':projectB') {
 configuration = 'compile'
 }
}

Using file dependencies
We can add dependencies using FileCollection. We can use the methods file(),
files(), and fileTree() to add dependencies to a configuration. The dependency
must be resolved to an actual artifact.

Chapter 5

[125]

The following example uses file dependencies for the compile configuration:

apply plugin: 'java'

dependencies {
 compile files('spring-core.jar', 'spring-aap.jar')
 compile fileTree(dir: 'deps', include: '*.jar')
}

Using client module dependencies
Normally, Gradle will use a descriptor XML file for dependencies found in the
repository to see which artifacts and optional transitive dependencies need to be
downloaded. But those descriptor files can be misconfigured, and so we may want
to override the descriptors ourselves to ensure the dependencies are correct. To do
this we must use the module() method to define the transitive dependencies of a
dependency. Gradle will then use our own configuration and not the one provided
by the module in a repository:

apply plugin: 'java'

ext {
 springGroup = 'org.springframework'
 springRelease = '3.1.1.RELEASE'
}
dependencies {
 compile module("$springGroup:spring-context:$springRelease") {
 dependency("$springGroup:spring-aop:$springRelease") {
 transitive = false
 }
 }
}

Using Gradle and Groovy dependencies
When we develop Grails plugins and tasks, we can define a dependency on the
Gradle API and the Groovy libraries used by the current Gradle version. We can use
the methods gradleApi() and localGroovy() to do this.

The following example defines the dependencies in the compile dependency
configuration of a project:

apply plugin: 'groovy'

// Dependency configuration for developing

Dependency Management

[126]

// Gradle plugins and tasks with Groovy.
dependencies {
 // Gradle API available for compile task.
 compile gradleApi()

 // Groovy libraries used by Gradle version.
 groovy localGroovy()
}

Accessing configuration dependencies
We can access the dependencies for a dependency configuration in a build file
or task through the configurations property of the Project object. We can
use the dependencies() and allDependencies() methods to get a reference
to the dependencies:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 runtime "org.springframework:spring-aop:3.1.1.RELEASE"
}

task 'dependencyInfo' << {
 println "-- Runtime dependencies --"
 configurations.runtime.dependencies.each {
 println "${it.group}:${it.name}:${it.version}"
 }

 println "-- Runtime allDependencies --"
 configurations.runtime.allDependencies.each {
 println "${it.group}:${it.name}:${it.version}"
 }
}

Chapter 5

[127]

Setting dynamic versions
Until now, we have set a version for a dependency explicitly with a complete
version number. To set a minimum version number, we can use a special dynamic
version syntax. For example, to set the dependency version to a minimum of 2.1 for
a dependency, we use a version value 2.1.+. Gradle will resolve the dependency to
the latest version after version 2.1, or to version 2.1 itself. In the following example,
we will define a dependency on a spring-core version of at least 3.1:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile group: 'org.springframework', name: 'spring-core',
version: '3.1.+'
}

We can also reference the latest released version of a module with latest.
integration. We can also set a version range with a minimum and maximum
version number. The following table shows the ranges we can use:

Range Description
[1.0, 2.0] All versions greater than or equal to 1.0 and

lower than or equal to 2.0
[1.0, 2.0[All versions greater than or equal to 1.0 and

lower than 2.0
]1.0, 2.0] All versions greater than 1.0 and lower than

or equal to 2.0
]1.0, 2.0[All versions greater than 1.0 and lower than

2.0
[1.0,) All versions greater than or equal to 1.0
]1.0,) All versions greater than 1.0
(, 2.0] All versions lower than or equal to 2.0
(, 2.0[All versions lower than 2.0

Dependency Management

[128]

The following example build file will use version 3.0.7.RELEASE as the latest release,
which is greater than 3.0 and less than 3.1:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 compile group: 'org.springframework', name: 'spring-core',
version: '[3.0, 3.1['
}

Resolving version conflicts
If we have a project with a lot of dependencies and those dependencies have
transitive dependencies, version conflicts can easily arise. If one module has a
dependency on sample:logging:1.0 and another on sample:logging:2.0,
Gradle will, by default, use the newest version number.

To change the default behavior, we set the resolutionStrategy property of a
dependency configuration. We can instruct Gradle to fail the build if a conflict
arises. This is very useful for debugging version conflicts.

In the following example build file, we instruct Gradle to fail the build if a version
conflicts arises for all configurations:

apply plugin: 'java'

configurations.all {
 resolutionStrategy {
 failOnVersionConflict()
 }
}

To force a certain version number to be used for all dependencies (even transitive
dependencies), we can use the force() method of resolutionStrategy. With
this method we can make sure that, for a given module, the preferred version is
always used:

apply plugin: 'java'

configurations.compile {

Chapter 5

[129]

 resolutionStrategy {
 force 'org.springframework:spring-core:3.1.0.RELEASE'
 }
}

Adding optional ANT tasks
We can re-use existing ANT (Another Neat Tool) tasks in Gradle build files.
Gradle uses Groovy's AntBuilder for ANT integration. But, if we want to use an
optional ANT task we must do something extra, because the optional tasks and their
dependencies are not in the Gradle classpath. Luckily, we only have to define our
dependencies for the optional task in the build.gradle file, and we can then define
and use the optional ANT task.

In the following sample, we are using the scp ANT optional task. We define a
new configuration with the name sshAntTask and assign the dependencies to
this configuration. Then, we can define the task and set the classpath property
to the classpath of the configuration. We use the asPath property to convert the
configuration classpath for the ANT task. In the sample, we also see how we can
ask for user input when the script is run. The passphrase for the ssh keyfile is a
secret and we don't want to keep it in a file somewhere, so we ask the user for it.
The Java method System.console() returns a reference to the console, and with
the readPassword() method, we can get the value for the passphrase:

// We define a new configuration with the name 'sshAntTask'.
// This configuration is used to define our dependencies.
configurations {
 sshAntTask
}

repositories.mavenCentral()

// Assign dependencies to the sshAntTask configuration.
dependencies {
 sshAntTask 'org.apache.ant:ant-jsch:1.7.1', 'jsch:jsch:0.1.29'
}

// Sample task which uses the scp ANT optional task.
task update {
 description = 'Update files on remote server.'

 // Get passphrase from user input.
 def console = System.console()

Dependency Management

[130]

 def passphrase = console.readPassword('%s: ', 'Please enter the
passphrase for the keyfile')

 // Redefine scp ANT task, with the classpath property set to our
newly defined
 // sshAntTask configuration classpath.
 ant.taskdef(name: 'scp', classname: 'org.apache.tools.ant.
taskdefs.optional.ssh.Scp',
 classpath: configurations.sshAntTask.asPath)

 // Invoke the scp ANT task. (Use gradle -i update to see the
output of the ANT task.)
 ant.scp(todir: 'mrhaki@servername:/home/mrhaki',
 keyfile: '${user.home}/.ssh/id_rsa',
 passphrase: passphrase as String, // Use phassphrase
entered by the user.
 verbose: 'true') {
 fileset(dir: 'work') {
 include(name: '**/**')
 }
 }
}

Using dependency configurations as files
Each dependency configuration implements the FileCollection interface of Gradle.
This means we can use a configuration reference if we need a list of files somewhere.
The files that make up the resolved dependency configuration are then used.

Let's create a new build file and use a dependency configuration as the value for the
from() method. We create a new task of type Copy and copy all dependencies of a
new configuration, springLibs, to a directory:

repositories.mavenCentral()

configurations {
 springLibs
}

dependencies {
 springLibs 'org.springframework:spring-web:3.1.1.RELEASE'
}

task copyCompileDeps(type: Copy) {
 from configurations.springLibs
 into "$buildDir/compileLibs"
}

Chapter 5

[131]

Summary
In this chapter we have learned about dependency management support in Gradle.
We have seen how to create a dependency configuration or use dependency
configurations provided by a plugin.

To get the real dependency artifacts and their transitive dependencies, we must
define repositories that store those files. Gradle allows very flexible repository
configurations to be used.

Finally, we saw how to define the actual dependencies for a dependency
configuration. We learned how to resolve version conflicts between dependencies
and how to use those dependencies in a Gradle build.

In the next chapter, we will look at how we can run tests for our code and how we
can execute Java applications from our build. We will also learn how we can publish
our own project to a repository.

Testing, Building, and
Publishing Artifacts

An important part of developing software is writing tests for our code. In this
chapter, we will learn how we can run our test code as part of the build process.
Gradle supports both JUnit and TestNG testing frameworks. We can even run
tests in parallel to shorten the time of the build, resulting in quick builds.

We will also learn how to run a Java application as part of a Gradle build.
We can use the application plugin to automatically execute a Java application
as part of the build.

After we have written and tested our code, it is time to publish the code so others
can use it. We will build a package and deploy our code to a company repository
or any other repository.

Testing
Gradle has built-in support for running tests for our Java projects. When we add
the Java plugin to our project, we get new tasks to compile and run tests. We also
get the dependency configurations testCompile and testRuntime. We use these
dependencies to set the classpath for running the tests in our code base.

Testing, Building, and Publishing Artifacts

[134]

Let's write a simple JUnit test for a sample Java class. The implementation of
gradle.sample.Sample has the method getWelcomeMessage(), where we
read a text from a property file and then return the value. The following
example contains the code for the Sample class:

// File: src/main/java/gradle/sample/Sample.java
package gradle.sample;

import java.util.ResourceBundle;

/**
 * Read welcome message from external properties file
 * <code>messages.properties</code>.
 */
public class Sample {

 public Sample() {
 }

 /**
 * Get <code>messages.properties</code> file and read
 * value for welcome key.
 *
 * @return Value for welcome key from <code>messages.
properties</code>
 */
 public String getWelcomeMessage() {
 final ResourceBundle resourceBundle = ResourceBundle.
getBundle("gradle.sample.messages");
 final String message = resourceBundle.getString("welcome");
 return message;
 }
}

Next, we must add the resource property file that is used by the Sample class.
We create the file messages.properties in the src/main/resources/gradle/
sample directory, with the following contents:

File: src/main/resources/gradle/sample/messages.properties
welcome = Welcome to Gradle!

Our test is very simple. We create a Sample object and invoke the
getWelcomeMessage() method. We compare the returned value with
a value we expect to be returned. The following sample contains the test
to check the value of the getWelcomeMessage() method with the expected
String value Welcome to Gradle. We need to create the file SampleTest.java
in the directory src/test/java/gradle/sample:

Chapter 6

[135]

// File: src/test/java/gradle/sample/
package gradle.sample;

import org.junit.Assert;
import org.junit.Test;

public class SampleTest {

 @Test
 public void readWelcomeMessage() {
 final Sample sample = new Sample();
 final String realMessage = sample.getWelcomeMessage();

 final String expectedMessage = "Welcome to Gradle.";

 Assert.assertEquals("Get text from properties file",
expectedMessage, realMessage);
 }
}

The Gradle build script for these files is very simple. We first apply the Java plugin,
and because we are keeping to Gradle's configuration conventions, we don't have to
configure or define much else. Our test is written as a JUnit test. JUnit is one of the
most used test frameworks for Java projects. To make sure the required JUnit classes
are available to compile and run the test class, we must add JUnit as a dependency to
our project. The Java plugin adds testCompile and testRuntime configurations we
can use. We add the JUnit dependency to the testCompile configuration. All JUnit
classes are now available to compile the test classes.

The following sample build file contains all the necessary code to execute the test:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 // Add at least version 4.8 of JUnit as dependency.
 testCompile 'junit:junit:[4.8,)'
}

Testing, Building, and Publishing Artifacts

[136]

To run our test, we only have to invoke the test task that is added by the Java
plugin, from the command line:

$ gradle test

:compileJava

:processResources

:classes

:compileTestJava

:processTestResources UP-TO-DATE

:testClasses

:test

gradle.sample.SampleTest > readWelcomeMessage FAILED

 org.junit.ComparisonFailure at SampleTest.java:15

1 test completed, 1 failed

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ':test'.

> There were failing tests. See the report at file:///Users/mrhaki/
Projects/gradle-book/samples/chapter6/sample/build/reports/tests.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or
--debug option to get more log output.

BUILD FAILED

Total time: 1.629 secs

If we look at the output, we see that the test has failed, but we don't see why. One
way to find out is to re-run the test task with extra logging. We can enable the info
logging level with --info (or –i) arguments, as shown in the following command:

$ gradle test --info

...

Gradle Worker 1 executing tests.

Chapter 6

[137]

Test readWelcomeMessage(gradle.sample.SampleTest) FAILED: org.junit.
ComparisonFailure: Get text from properties file expected:<Welcome to
Gradle[.]> but was:<Welcome to Gradle[!]>

Test gradle.sample.SampleTest FAILED

Gradle Worker 1 finished executing tests.

1 test completed, 1 failure

...

Now we can see why our test failed. In our test, we expected a dot (.) at the end
of the String instead of the exclamation mark (!) we got from the property file.
To fix our test, we must change the contents of the property file and replace the
exclamation mark with a dot. Before we do that, we will use a different way to
see the test results. Until now, we looked at the output on the command line after
running the test task. In the directory build/reports/test, there is an HTML
file report available with the results of our test run.

If we open the file build/reports/test/index.html in a web browser, we get
a clear overview of the tests that have run and failed:

Testing, Building, and Publishing Artifacts

[138]

We can click on the method name of a failed test to see the details. Here we see
again the message stating that the expected String value had a dot instead of
an exclamation mark at the end of the line:

Chapter 6

[139]

Let's change the contents of the messages.properties file and use a dot instead
of an exclamation mark at the end of the line:

File: src/main/resources/gradle/sample/messages.properties
welcome = Welcome to Gradle.

Now we run the test task again, from the command line:

$ gradle test

:compileJava UP-TO-DATE

:processResources

:classes

:compileTestJava

:processTestResources UP-TO-DATE

:testClasses

:test

BUILD SUCCESSFUL

Total time: 1.714 secs

The Gradle build did not fail this time and is successful. Our test has run, and we
get the expected result from the getWelcomeMessage() method.

The following screenshot shows that the tests are 100 percent successful and are
also documented in the generated test HTML reports:

Testing, Building, and Publishing Artifacts

[140]

Using TestNG for testing
We have written a test with the JUnit test framework. Gradle also supports tests
that are written with the TestNG test framework. Gradle scans the test classpath
for all class files and checks if they have specific JUnit or TestNG annotations. If a
test class or super class extends TestCase or GroovyTestCase or is annotated with
the @RunWith annotation, the test class is also determined to be a JUnit test.

For Gradle to use either JUnit or TestNG tests when we run the test task, we invoke
the useJUnit() or useTestNG() methods, respectively, to force Gradle to use the
correct testing framework. Gradle uses JUnit as testing framework by default, so we
don't have to use the useJUnit() method when we use JUnit or JUnit-compatible
test frameworks to test our code.

Let's write a new test, but this time we will use TestNG annotations and classes.
The following sample class is the same test as we saw before, but written with
the TestNG framework:

// File: src/test/java/gradle/sample/SampleTestNG.java
package gradle.sample;

import org.testng.annotations.Test;
import org.testng.AssertJUnit;

public class SampleTestNG {

 @Test
 public void readWelcomeMessage() {
 final Sample sample = new Sample();
 final String realMessage = sample.getWelcomeMessage();

 final String expectedMessage = "Welcome to Gradle.";

 AssertJUnit.assertEquals("Get text from properties file",
expectedMessage, realMessage);
 }

}

Chapter 6

[141]

We need to add the TestNG dependency to the testCompile dependency
configuration. Furthermore, we invoke the useTestNG() method on our test
task, so Gradle will pick up our new test. We create a new build file and add
the following:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:[4.8,)'
 testCompile 'org.testng:testng:6.5.1'
}

test.useTestNG()

Now we can run the test task again, but this time Gradle will use our TestNG test:

$ gradle test

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:compileTestJava UP-TO-DATE

:processTestResources UP-TO-DATE

:testClasses

:test

BUILD SUCCESSFUL

Total time: 0.988 secs

Testing, Building, and Publishing Artifacts

[142]

The generated HTML test report is in the directory build/reports/tests. We can
open the file index.html in our web browser and see the output that is generated by
the TestNG framework. The following screenshot shows an example of the output
that we can view:

Gradle cannot use the test task to run both the JUnit and TestNG tests at the
same time. If we have both types of tests in our project and we want to run them,
we must add a new task of type Test. This new task can run the specific tests for
one of the frameworks.

We add a new task of type Test to run the TestNG tests in our build file:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:[4.8,)', 'org.testng:testng:6.5.1'
}

Chapter 6

[143]

task testNG(type: Test) {
 useTestNG()
}

test.dependsOn testNG

To add configuration options for TestNG, we can pass a closure to the useTestNG()
method. The closure has an argument of type org.gradle.api.tasks.testing.
testng.TestNGOptions. The following table shows the options we can set:

Option name Type Description
excludeGroups Set Set of groups to exclude.
includeGroups Set Set of groups to include.
javadocAnnotations boolean When true, Javadoc

annotations are used for
these tests.

listeners Set Set of qualified classes that
are TestNG listeners.

parallel String The parallel mode to use for
running tests. method or
tests are valid options.

suiteName String Sets the default name of
the test suite, if one is not
specified in a suite.xml
file or in the source code.

suiteXmlBuilder MarkupBuilder MarkupBuilder to create
a suite XML.

suiteXmlWriter StringWriter StringWriter to write
out XML.

testName String Sets the default name of the
test, if one is not specified in
a suite.xml file or in the
source code.

testResources List List of all directories
containing test sources.

threadCount int The number of threads to
use for this run.

useDefaultListeners boolean Whether the default
listeners and reporters
should be used.

Testing, Building, and Publishing Artifacts

[144]

The following sample build file uses some of these options to configure TestNG:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'org.testng:testng:6.5.1'
}

test {
 useTestNG { options ->
 options.excludeGroups = ['functional'] as Set
 options.parallel = 'method'
 options.threadCount = 4
 }
}

Configuring the test process
The tests that are executed by the test task run in a separate, isolated JVM process.
We can use several properties to control this process. We can set system properties
and JVM arguments, and we can configure the Java class that needs to be executed
to run the tests.

To debug the tests, we can set the debug property of the test task. Gradle will start
the test process in debug mode and will listen on port 5005 for a debug process to
attach to. This way, we can run our tests and use an IDE debugger to step through
the code.

By default, Gradle will fail the build if any test fails. If we want to change this setting,
we must set the ignoreFailures property to true. Our build will then not fail, even
if we have errors in our tests. The generated test reports will still have the errors. It is
bad practice to ignore failures, but it is good to know the option is there if we need it.

The following build file configures the test task with the properties just discussed:

apply plugin: 'java'

repositories {
 mavenCentral()
}

Chapter 6

[145]

dependencies {
 testCompile 'junit:junit:[4.8,)'
}

test {
 // Add System property to running tests.
 systemProperty 'sysProp', 'value'

 // Use the following JVM arguments for each test process.
 jvmArgs '-Xms256m', '-Xmx512m'

 // Enable debugging mode.
 debug = true

 // Ignore any test failues and don't fail the build.
 ignoreFailures = true

 // Enable assertions for test with the assert keyword.
 enableAssertions = true
}

Gradle can execute tests in parallel. This means Gradle will start multiple test
processes concurrently. A test process only executes a single test at a time. By
enabling parallel test execution, the total execution time of the test task can
drastically decrease, if we have a lot of tests. We must use the maxParallelForks
property to set how many test processes we want to run in parallel. The default
value is 1, which means that the tests don't run in parallel.

Each test process sets a system property of the name org.gradle.test.worker with
a unique value. We could use this value to generate unique files for a test process.

If we have a lot of tests that are executed by a single test process, we might get heap
size or PermGen problems. With the property forkEvery, we can set how many tests
need to run in a single test process, before a new test process is started to execute
more tests. So, if Gradle sees that the number of tests exceeds the given number
assigned to the forkEvery property, the test process is restarted and the following
set of tests is executed.

Let's create a new build file and configure it such that we can run four test processes
in parallel and relaunch the test process after 10 tests:

apply plugin: 'java'

repositories {
 mavenCentral()

Testing, Building, and Publishing Artifacts

[146]

}

dependencies {
 testCompile 'junit:junit:[4.8,)'
}

test {
 forkEvery = 10
 maxParallelForks = 4
}

Determining tests
To determine which files are tests, Gradle will inspect the compiled class files.
If a class or its methods have the @Test annotation, Gradle will treat it as a JUnit or
TestNG test. If the class extends TestCase or GroovyTestCase or is annotated with
@RunWith, Gradle will handle it as a JUnit test. Abstract classes are not inspected.

We can disable this automatic inspection with the scanForTestClasses
property of the test task. If we set the property to false, Gradle will use the
implicit include rules **/*Tests.class and **/*Test.class and the exclude
rule **/Abstract*.class.

We can also set our own include and exclude rules to find tests. We use the
include() method of the test task to define our own rule for test classes. If we
want to exclude certain class files, we can use the exclude() method to define the
exclude rules.

In the following build file, we disable the automatic class inspection for test classes
and set the include and exclude rules for test classes, explicitly:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:[4.8,)'
}

test {
 // Disable automatic inspections.

Chapter 6

[147]

 scanForTestClasses = false

 // Include test classes.
 include '**/*Test.class', '**/*Spec.class'

 // Exclude test classes.
 exclude '**/Abstract*.class', '**/Run*.class'
}

Logging test output
We already noticed that the output that is shown on the command line isn't much if
we simply run the test task. We must set the logging level to info or debug, to get
more information about the output that is generated by the tests. We can configure
the test task to show more output with the testLogging property. This property
is of type org.gradle.api.tasks.testing.logging.TestLoggingContainer.
We can set different options for each log level. If we don't specify a log level, the
lifecyle log level is implied. The property is marked as experimental, which
means the features can change in future versions of Gradle.

TestLoggingContainer has the option showStandardStreams, which we can
set to true or false. If we set the value of the property to true, we get the
output from System.out and System.err when we run the test tasks.

We can also use the events() method to set which events are logged on the
command-line output. For example, we can configure that we also want to see
the passed tests with the String value passed as an argument. We can use the
arguments standardOut and standardError to get the same effect as with the
showStandardStreams property. Other valid arguments are failed, started,
and skipped.

If a test fails, we only see the line number of the test that failed. To get more output
for a failed test, we can set the option exceptionFormat to full. Then, we get the
exception message with, say, the assertion failed message. The default value is
short, which only shows the line number. With the property stackTraceFilters,
we can determine how much of the stack trace is logged.

We can also set the maximum and minimum granularity of the log messages with
the minGranularity and maxGranularity properties. We use the value 0 for the
Gradle-generated test suite, 1 for the generated test suite per test JVM, 2 for a test
class, and 3 for a test method.

Testing, Building, and Publishing Artifacts

[148]

The following sample build file sets some of the options that are available:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:[4.8,)'
}

test {
 // Set exception format to full
 // instead of default value 'short'.
 testLogging.exceptionFormat 'full'

 // We can also a script block to configure
 // the testLogging property.
 testLogging {
 // No log level specified so the
 // property is set on LIFECYCLE log level.
 // We can pass arguments to determine
 // which test events we want to see in the
 // command-line output.
 events 'passed'

 // Show logging events for test methods.
 minGranularity = 3

 // All valid values for the stackTrace output.
 stackTraceFilters 'groovy', 'entry_point', 'truncate'

 // Show System.out and System.err output
 // from the tests.
 showStandardStreams = true

 // Configure options for DEBUG log level.
 debug {
 events 'started'
 }
 }

}

Chapter 6

[149]

Generating test reports
We have already seen the HTML reports that are generated when we run the tests, in
the build/reports/tests directory. To change the directory name, we can set the
testReportDir property as part of the test task.

Besides the generated HTML report, we have XML files that are generated by the
test task, with the results of the tests. These XML files are actually the input for the
generated HTML report. There are a lot of tools available that can use the XML files
generated by JUnit or TestNG and perform an analysis on them. We can find the files
in the build/test-results directory. To change this directory, we must change the
testResultDir property of the test task.

To disable the generation of the test reports, we set the property testReport to false.

The following build file shows how we can change the report directories and disable
the generation of the test reports:

apply plugin: 'java'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:[4.8,)'
}

test.testReportDir = file("$buildDir/test-reports")
test.testResultsDir = file("$buildDir/test-results")
test.testReport = false

Running Java applications
If we want to execute a Java executable from a Gradle build, we have several options.
Before we explore these options, we will first create a new Java class with a main()
method in our project. We will execute this Java class from our build file.

In the directory src/main/java/gradle/sample, we need to create a new file
SampleApp.java. The following code listing shows the contents of the file. We use our
Sample class to print the value of the getWelcomeMessage() method to System.out:

// File: src/main/java/gradle/sample/SampleApp.java
package gradle.sample;

Testing, Building, and Publishing Artifacts

[150]

import java.util.ResourceBundle;

public class SampleApp {

 public SampleApp() {
 }

 public static void main(final String[] arguments) {
 final SampleApp app = new SampleApp();
 app.welcomeMessage();
 }

 public void welcomeMessage() {
 final String welcomeMessage = readMessage();
 showMessage(welcomeMessage);
 }

 private String readMessage() {
 final Sample sample = new Sample();
 final String message = sample.getWelcomeMessage();
 return message;
 }

 private void showMessage(final String message) {
 System.out.println(message);
 }
}

To run our SampleApp class we can use the javaexec() method that is part of
Gradle's Project class. We could also use the JavaExec task in our build file.
Finally, we could use the application plugin to run our SampleApp class.

Running an application from a project
The Project class that is always available in our build file has the javaexec()
method. With this method we can execute a Java class. The method accepts a
closure that is used to configure the org.gradle.process.JavaExecSpec object.
JavaExecSpec has several methods and properties we can use to configure the main
class that needs to be executed, optional arguments, and system properties. A lot of
the options are the same as for running tests.

Chapter 6

[151]

We create a new build file and use the javaexec() method to run our SampleApp
class with some extra options:

apply plugin: 'java'

task runJava(dependsOn: classes) << {
 javaexec {
 // Java main class to execute.
 main = 'gradle.sample.SampleApp'

 // We need to set the classpath.
 classpath sourceSets.main.runtimeClasspath

 // Extra options can be set.
 maxHeapSize = '128m'
 systemProperty 'sysProp', 'notUsed'
 jvmArgs '-client'
 }
}
runJava.description = 'Run gradle.sample.SampleApp'

To run our Java class, we execute the runJava task from the command line and get
the following output:

$ gradle runJava

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:runJava

Welcome to Gradle.

BUILD SUCCESSFUL

Total time: 1.465 secs

Running an application as task
Besides the javaexec() method, we can define a new task of type org.gradle.
api.tasks.JavaExec. To configure the task, we can use the same methods and
properties as with the javaexec() method.

Testing, Building, and Publishing Artifacts

[152]

In the following sample build file, we create the task runJava of type JavaExec. We
configure the task to set the classpath and main class. Also, we see how we can add
other properties and invoke other methods to further configure the execution of the
Java class:

apply plugin: 'java'

task runJava(type: JavaExec) {
 dependsOn classes
 description = 'Run gradle.sample.SampleApp'

 // Java main class to execute.
 main = 'gradle.sample.SampleApp'

 // We need to set the classpath.
 classpath sourceSets.main.runtimeClasspath

 // Extra options can be set.
 systemProperty 'sysProp', 'notUsed'
 jvmArgs '-client'

 // We can pass arguments to the main() method
 // of gradle.sample.SampleApp.
 args 'mainMethodArgument', 'notUsed'
}

If we run the task we get the following output:

$ gradle runJava

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:runJava

Welcome to Gradle.

BUILD SUCCESSFUL

Total time: 0.932 secs

Chapter 6

[153]

Running an application with the application
plugin
Another way to run a Java application is with the application plugin. The application
plugin adds functionality to our build file to run Java applications and also to bundle
the Java application for distribution.

To use the application plugin, we must add the plugin to our build file with the
apply() method. Once we have added the plugin, we can set the main class to be
executed with the property mainClassName. This time, we don't have to create a
new task ourselves. The plugin has added the run task that we can invoke to run
the Java application.

The sample build file uses the application plugin to run our SampleApp class:

apply plugin: 'java'
apply plugin: 'application'

mainClassName = 'gradle.sample.SampleApp'

// Extra configuration for run task if needed.
run {
 // Extra options can be set.
 systemProperty 'sysProp', 'notUsed'
 jvmArgs '-client'

 // We can pass arguments to the main() method
 // of gradle.sample.SampleApp.
 args 'mainMethodArgument', 'notUsed'
}

We can invoke the run task and see the output of the SampleApp class:

$ gradle run

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:run

Welcome to Gradle.

BUILD SUCCESSFUL

Total time: 1.423 secs

Testing, Building, and Publishing Artifacts

[154]

Note that we don't have to set the classpath property anymore. The plugin
automatically includes the runtimeClasspath object of the project to execute
the Java class.

Creating a distributable application archive
With the application plugin we can also build a distribution with our Java
application. This means we can distribute the application and people can run the
Java application without Gradle. The plugin will create the necessary operating
system-specific start scripts and package all necessary classes and dependencies.

The following table shows the extra tasks we can use with the application plugin
to build a distribution:

Task Depends on Type Description
startScripts jar CreateStart

Scripts
Creates operating
system-specific
scripts to run the
Java application.

installApp jar,
startScripts

Sync Installs the
application into a
directory.

distZip jar,
startScripts

Zip Creates a full
distribution ZIP
archive including
all necessary files
to run the Java
application.

All tasks depend on the jar task. In order to get a meaningful JAR filename,
we set the properties archivesBaseName and version in our build file:

apply plugin: 'java'
apply plugin: 'application'

archivesBaseName = 'gradle-sample'
version = '1.0'

mainClassName = 'gradle.sample.SampleApp'

Chapter 6

[155]

To create the start scripts, we invoke the createScript task. After we have executed
the task, we have two files, sample and sample.bat, in the directory build/
scripts. The sample.bat file is for the Windows operating system and sample is
for other operating systems, such as Linux or OS X.

To have all files that are needed for running the application in a separate directory,
we must run the installApp task. When we execute the task, we get a sample
directory in the build/install directory. The sample directory has a bin directory
with the start scripts and a lib directory with the JAR file containing the SampleApp
application. We can change to the build/install/sample directory and then invoke
bin/sample or bin/sample.bat to run our application:

$ gradle installApp

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:startScripts UP-TO-DATE

:installApp

BUILD SUCCESSFUL

Total time: 1.511 secs

$ cd build/install/sample

$ bin/sample

Welcome to Gradle.

To create a ZIP archive with all necessary files, which would enable others to run
the application, we run the distZip task. The resulting ZIP archive can be found in
the directory build/distributions. We can distribute this ZIP file and people can
unzip the archive on their computers to run the Java application:

$ gradle distZip

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:startScripts UP-TO-DATE

Testing, Building, and Publishing Artifacts

[156]

:distZip

BUILD SUCCESSFUL

Total time: 1.089 secs

$ jar tvf build/distributions/sample-1.0.zip

 0 Mon Apr 30 08:08:10 CEST 2012 sample-1.0/

 0 Mon Apr 30 08:08:10 CEST 2012 sample-1.0/lib/

 1890 Mon Apr 30 08:01:12 CEST 2012 sample-1.0/lib/gradle-sample-1.0.jar

 0 Mon Apr 30 08:08:10 CEST 2012 sample-1.0/bin/

 4997 Mon Apr 30 08:01:14 CEST 2012 sample-1.0/bin/sample

 2347 Mon Apr 30 08:01:14 CEST 2012 sample-1.0/bin/sample.bat

If we want to add other files to the distribution, we can create the directory src/
dist and place files in there. Any files in the src/dist directory are included in
the distribution ZIP archive. To include files from another directory, we can use the
applicationDistribution copy specification.

The following sample build file uses the applicationDistribution copy
specification to include the output of the docs task. Gradle will automatically
execute the docs task before invoking the distZip task:

apply plugin: 'java'
apply plugin: 'application'
apply plugin: 'idea'

archivesBaseName = 'gradle-sample'
version = '1.0'

mainClassName = 'gradle.sample.SampleApp'

task docs {
 def docsDir = 'docs'
 def docsResultDir = file("$buildDir/$docsDir")

 // Assign directory to task outputs.
 outputs.dir docResultDir

 doLast {
 docsResultDir.mkdirs()
 new File(docsResultDir, 'README').write('Please read me.')
 }

Chapter 6

[157]

}

applicationDistribution.from(docs) {
 // Directory in distribution ZIP archive.
 into 'docs'
}

Publishing artifacts
A software project can contain artifacts that we want to publish. An artifact can be
a ZIP or JAR archive file or any other file. In Gradle, we can define more than one
artifact for a project. We can publish these artifacts to a central repository so other
developers can use our artifacts in their projects. These central repositories can be
available on a company intranet, a network drive, or via the Internet.

In Gradle, we group artifacts through configurations, just like dependencies.
A configuration can contain both dependencies and artifacts. If we add the Java
plugin to our project, we also get two extra tasks per configuration to build and
upload the artifacts belonging to the configuration. The task to build the artifacts
is called build<configurationName>, and the task to upload the artifacts is
named upload<configurationName>.

The Java plugin also adds the configuration archives that can be used to assign
artifacts. The default JAR artifact for a Java project is already assigned to this
configuration. We can assign more artifacts to this configuration for our project.
We can also add new configurations to assign artifacts in a project.

For our Java project we will define the following sample build file:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

Because we use the Java plugin we have the archives configuration available. When
we execute the task buildArchives, our Java code gets compiled and a JAR file is
created in the directory build/libs, with the name gradle-sample-1.0.jar.

To publish our JAR file, we can execute the task uploadArchives, but we must
first configure where to publish the artifact. The repositories we have defined for
dependencies are not used to upload the artifacts. We have to define the upload
repository in the uploadArchives task. We can reference a repository already
defined in our project or define the repositories in the task.

Testing, Building, and Publishing Artifacts

[158]

The following sample build file defines an upload repository at project level and
at the task level:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

repositories {
 flatDir {
 name 'uploadRepository'
 dirs 'upload'
 }
}

uploadArchives {
 repositories {
 // Use repository defined in project
 // for uploading the JAR file.
 add project.repositories.uploadRepository

 // Extra upload repository defined in
 // the upload task.
 flatDir {
 dirs 'libs'
 }
 }
}

If we invoke the task uploadArchives, the JAR file is created and copied to the libs
and upload directories. An ivy.xml configuration file is also created and copied to
the directories:

$ gradle uploadArchives

:compileJava

:processResources

:classes

:jar

:uploadArchives

BUILD SUCCESSFUL

Total time: 0.8 secs

Chapter 6

[159]

$ ls upload

ivy-1.0.xml sample-1.0.jar

sample mrhaki$ ls libs

ivy-1.0.xml sample-1.0.jar

We can use all Ivy resolvers to define upload repositories.

Uploading to a Maven repository
If we want to upload to a Maven repository, we must create a Maven POM
(Project Object Model) file. The Maven POM file contains all necessary information
about our artifact. Gradle can generate the POM file for us. We must add the Maven
plugin to our project in order to make this work.

We must configure the repository for our uploadArchives task via a closure
argument of the mavenDeployer() method. In the following sample build file, we
will define a Maven repository with the file protocol:

apply plugin: 'java'
apply plugin: 'maven'

archivesBaseName = 'gradle-sample'
group = 'gradle.sample'
version = '1.0'

uploadArchives {
 repositories {
 mavenDeployer {
 repository(url: 'file:./maven')
 }
 }
}

Note that we set the group property of our project so it can be used as the
groupId of the Maven POM. The version property is used as the version and
the archivesBaseName property is used as the artifact ID. We can invoke the
uploadArchives task to deploy our artifact:

$ gradle uploadArchives

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

Testing, Building, and Publishing Artifacts

[160]

:uploadArchives

Uploading: gradle/sample/gradle-sample/1.0/gradle-sample-1.0.jar to
repository remote at file:./maven

Transferring 2K from remote

Uploaded 2K

BUILD SUCCESSFUL

Total time: 1.196 secs

$ ls maven/gradle/sample/gradle-sample/1.0/

gradle-sample-1.0.jar

gradle-sample-1.0.jar.sha1

gradle-sample-1.0.pom.md5

gradle-sample-1.0.jar.md5

gradle-sample-1.0.pom

gradle-sample-1.0.pom.sha1

The contents of the generated POM file gradle-sample-1.0.pom are as follows:

<?xml version="1.0" encoding="UTF-8"?>
<project xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://
maven.apache.org/xsd/maven-4.0.0.xsd" xmlns="http://maven.apache.org/
POM/4.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <modelVersion>4.0.0</modelVersion>
 <groupId>gradle.sample</groupId>
 <artifactId>gradle-sample</artifactId>
 <version>1.0</version>
</project>

Gradle uses the native Maven ANT tasks to deploy the artifacts to a Maven repository.
The file protocol is supported without any extra configuration, but if we want to use
other protocols we must configure the libraries those protocols depend on.

Protocol Library
http org.apache.maven.wagon:

wagon-http:1.0-beta-2

ssh org.apache.maven.wagon:
wagon-ssh:1.0-beta-2

ssh-external org.apache.maven.wagon:
wagon-ssh-external:1.0-beta-2

Chapter 6

[161]

Protocol Library
scp org.apache.maven.wagon:

wagon-scp:1.0-beta-2

ftp org.apache.maven.wagon:
wagon-ftp:1.0-beta-2

webdav org.apache.maven.wagon:
wagon-webdav-jackrabbit:
1.0-beta-6

file -

In the following sample build file, we use the scp protocol to define a Maven
repository and use it to upload the project's artifact:

apply plugin: 'java'
apply plugin: 'maven'

archivesBaseName = 'gradle-sample'
group = 'gradle.sample'
version = '1.0'

configurations {
 mavenScp
}

repositories {
 mavenCentral()
}

dependencies {
 mavenScp 'org.apache.maven.wagon:wagon-scp:1.0-beta-2'
}

uploadArchives {
 repositories {
 mavenDeployer {
 configuration = configurations.mavenScp
 repository(url: 'scp://localhost/mavenRepo') {
 authentication(username: 'user', privateKey: 'id_sha')
 }
 }
 }
}

Testing, Building, and Publishing Artifacts

[162]

The Maven plugin also adds the install task to our project. With the install task,
we can install the artifact to our local Maven repository. Gradle will use the default
location of the local Maven repository or the location that is defined in a Maven
settings.xml file.

Multiple artifacts
Until now, we have uploaded a single artifact to a repository. In a Gradle project,
we can define multiple artifacts and deploy them. We need to define an archive
task and assign it to a configuration. We use the artifacts{} script block to define
a configuration closure, to assign an artifact to a configuration. The artifact is then
deployed to a repository when we execute the upload task.

In the following sample build, we create JAR files with the source code and Javadoc
documentation. We assign both JAR files as artifacts to the archives configuration:

apply plugin: 'java'

archivesBaseName = 'gradle-sample'
version = '1.0'

task sourcesJar(type: Jar) {
 classifier = 'sources'
 from sourceSets.main.allSource
}

task docJar(type: Jar, dependsOn: javadoc) {
 classifier = 'docs'
 from javadoc.destinationDir
}

artifacts {
 archives sourcesJar
 archives docJar
}

uploadArchives {
 repositories {
 flatDir {
 dirs 'upload'
 }
 }
}

Chapter 6

[163]

Signing artifacts
We can digitally sign artifacts in Gradle with the signing plugin. The plugin only has
support for generating Pretty Good Privacy (PGP) signatures, which is the signature
format required for publication to the Maven Central Repository. To create a PGP
signature we must install some PGP tools on our computers. Installation of the tools
is different for each operating system. With the PGP software we need to create a key
pair that we can use to sign our artifacts.

We need to configure the signing plugin with the information about our key pair.
We need the hexadecimal representation of the public key, the path to the secret
key ring file with our private key, and the passphrase used to protect the private
key. The values of these properties are assigned to the Gradle project properties
signing.keyId, signing.secretKeyRingFile, and signing.password. The
values of these properties are best kept secret, so it is better to store them in
our gradle.properties file in the Gradle user directory and apply secure
file permissions to
the file. It is best to make the file read-only for a single user.

The following sample gradle.properties file has the signing properties set.
The values of the properties shown are sample values. These will be different
for other users:

signing.keyId=4E12C354
signing.secretKeyRingFile=/Users/current/.gnupg/secring.gpg
signing.password=secret phassphrase

We are ready to sign our artifacts. We need to configure which artifacts we
want signed. The signing plugin has a DSL we can use to define which tasks
or configurations we want signed.

In our sample Java project, we have the archives configuration with artifacts of
our project. To sign the artifacts, we can use the signing() method and a closure
to configure that all artifacts of the archives configuration need to be signed. The
following sample build file shows how we can do this:

apply plugin: 'java'
apply plugin: 'signing'

archivesBaseName = 'gradle-sample'
version = '1.0'

signing {
 sign configurations.archives
}

Testing, Building, and Publishing Artifacts

[164]

The signing plugin adds a new task, named signArchives, to our project, because
we have configured that we want the archives configuration to be signed. The
signing plugin adds tasks with the pattern sign<configurationName> to our
project, for each configuration we configure to be signed.

We can invoke the signArchives task to sign our JAR artifact or use the jar task,
which is automatically dependent on the signArchives task:

$ gradle signArchives

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:signArchives

BUILD SUCCESSFUL

Total time: 1.649 secs

$ ls build/libs/gradle-sample-1.0.jar*

build/libs/gradle-sample-1.0.jar

build/libs/gradle-sample-1.0.jar.asc

Note that the signature file gradle-sample-1.0.jar.asc is placed next to
the artifact.

If the artifact we want to sign is not part of a configuration, we can use the signing
DSL to configure a task to be signed. The task must create an archive file in order
to be used for signing. After we have configured the task to be signed, the signing
plugin adds a new task with the naming pattern sign<taskName>. We can execute
that task to sign the output of the configured task.

The following build file has the task sourcesJar, to create a new archive with the
source files of our project. We use the signing DSL to configure our task for signing:

apply plugin: 'java'
apply plugin: 'signing'

archivesBaseName = 'gradle-sample'
version = '1.0'

task sourcesJar(type: Jar) {
 classifier = 'sources'

Chapter 6

[165]

 from sourceSets.main.allSource
}

signing {
 sign sourcesJar
}

We can invoke the task signSourcesJar to digitally sign our JAR file with the
sources of our project. The generated signature file is placed next to the JAR file
in the build/libs directory. We can also invoke the assemble task to create the
digitally signed JAR file, because this task is made dependent on all our archive
tasks, including the signing tasks:

$ gradle signSourcesJar

:sourcesJar

:signSourcesJar

BUILD SUCCESSFUL

Total time: 0.87 secs

sample mrhaki$ ls build/libs/gradle-sample-1.0-sources.jar*

build/libs/gradle-sample-1.0-sources.jar

build/libs/gradle-sample-1.0-sources.jar.asc

Publishing signature files
To publish our signatures to a repository, we don't have to do anything special. Gradle
automatically adds the generated signature files to our archives configuration. So, if
we configure the uploadArchives task with a valid repository, we only have to run
the uploadArchives task to upload both our artifacts with their signature files.

The following code adds the task sourcesJar to the build file, and we assign it to
the archives configuration. We configure the signing plugin to use the archives
configuration to find the artifacts to sign. Finally, we configure a simple file-based
repository to store the artifacts with their signature files:

apply plugin: 'java'
apply plugin: 'signing'

archivesBaseName = 'gradle-sample'
version = '1.0'

Testing, Building, and Publishing Artifacts

[166]

task sourcesJar(type: Jar) {
 classifier = 'sources'
 from sourceSets.main.allSource
}

artifacts {
 archives sourcesJar
}

signing {
 sign configurations.archives
}

uploadArchives {
 repositories {
 flatDir {
 dirs 'upload'
 }
 }
}

We can execute the task uploadArchives and look in the upload directory to
see all the files that are created:

$ gradle uploadArchives

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:jar UP-TO-DATE

:sourcesJar UP-TO-DATE

:signArchives UP-TO-DATE

:uploadArchives

BUILD SUCCESSFUL

Total time: 0.816 secs

sample mrhaki$ ls upload/

gradle-sample-1.0-sources.asc

gradle-sample-1.0.asc

ivy-1.0.xml

gradle-sample-1.0-sources.jar

gradle-sample-1.0.jar

Chapter 6

[167]

Configuring conditional signing
With the signing DSL, we can also configure a condition to determine whether
signing is required, for example, defining a condition to only sign the artifacts
when the project is ready to be released.

In the sample build file, we only want to sign the artifacts if the uploadArchives
task is part of the Gradle task graph to be executed and if the version of the project
doesn't end with the String value DEV:

apply plugin: 'java'
apply plugin: 'signing'

archivesBaseName = 'gradle-sample'
version = '1.0-DEV'

signing {
 required {
 !version.endsWith('DEV') &&
 gradle.taskGraph.hasTask('uploadArchives')
 }
 sign configurations.archives
}

Packaging Java Enterprise Edition
applications
We have learned how to create ZIP, TAR, and JAR archives with Gradle in this
chapter and the previous one. In a Java project we can also package our applications
as Web application Archive (WAR) or Enterprise Archive (EAR) files. For a web
application we would like to package our application as a WAR file, while a Java
Enterprise Edition application can be packaged as an EAR file. Gradle also supports
these types of archives with plugins and tasks.

Creating a WAR file
To create a WAR file we can add a new task of type War to our Java project.
The properties and methods of the War task are the same as for the other
archive tasks such as Jar. In fact, the War task extends the Jar task.

Testing, Building, and Publishing Artifacts

[168]

The War task has an extra method, webInf(), to define a source directory for the
WEB-INF directory in a WAR file. The webXml property can be used to reference a
web.xml file that needs to be copied into the WAR file. This is just another way to
include a web.xml file; we can also place the web.xml file in the WEB-INF directory
of the root source directory we defined for the WAR file.

With the classpath() method, we can define a dependency configuration or
directory with libraries or class files we want copied to our WAR file. If the file
is a JAR or ZIP file, it is copied to the WEB-INF/lib directory and other files are
copied into the WEB-INF/classes directory.

In the following sample build file we define a new task war. We set the root of the
WAR file contents to the directory src/main/webapp. We use the webInf() and
classpath() methods to customize the contents of the WEB-INF, WEB-INF/classes,
and WEB-INF/lib folders. And, we set a custom web.xml file with the webXml
property of the task:

apply plugin: 'java'

version = '1.0'

task war(type: War) {
 dependsOn classes

 from 'src/main/webapp'

 // Files copied to WEB-INF.
 webInf {
 from 'src/main/webInf'
 }

 // Copied to WEB-INF/classes.
 classpath sourceSets.main.runtimeClasspath

 // Copied to WEB-INF/lib.
 classpath fileTree('libs')

 // Custom web.xml.
 webXml = file('src/main/webXml/web-dev.xml')

 baseName = 'gradle-webapp'
}

assemble.dependsOn war

Chapter 6

[169]

To create the WAR file we can execute the war or assemble task. The war task is
added to the assemble task as a task dependency. That is why, if we invoke the
assemble task, Gradle will execute the war task. Once we have executed the task,
the WAR file gradle-webapp-1.0.war is created in the directory build/libs:

$ gradle war

:compileJava

:processResources

:classes

:war

BUILD SUCCESSFUL

Total time: 0.727 secs

web mrhaki$ ls build/libs

gradle-webapp-1.0.war

Using the War plugin
Instead of creating a War task ourselves, we can apply the War plugin in our project.
This plugin adds a war task for us that we can invoke. Also, the default JAR archive
is not created for our project any more, as part of the assemble task.

The plugin also adds two dependency configurations to our project, with the
names providedCompile and providedRuntime. Any dependencies added to
these configurations are not copied to the WEB-INF/lib directory of our WAR file.
If a dependency exists both in the runtime and providedRuntime configuration, it
is not copied to the WEB-INF/lib folder. This also works for transitive dependencies.

The default source directory for the contents of the WAR file is src/main/webapp.
We can change this with the property webAppDirName, if we want to use another
directory. This property is a convention property provided by the War plugin.

To customize the added war task, we still use the same methods and properties
we have used for the war task we created ourselves.

In the sample build file, we now apply the War plugin. We assign some
dependencies to the extra dependency configurations and customize the war task:

apply plugin: 'war'

version = '1.0'

Testing, Building, and Publishing Artifacts

[170]

repositories {
 mavenCentral()
}

configurations {
 extraLibs
}

dependencies {
 providedCompile 'javax.servlet:servlet-api:3.0'
 providedRuntime 'webcontainer:logging:1.0'
 extraLibs 'sample:lib:2.1'
}

war {
 classpath configuration.extraLibs

 // Custom web.xml.
 webXml = file('src/main/webXml/web-dev.xml')

 baseName = 'gradle-webapp'
}

Creating an EAR file
To create an EAR file we can create a new task of type Ear. This task has the same
properties and methods as the Jar task. The Ear task extends the Jar task.

With the lib() method, we can define which files need to be copied to the lib
directory in the EAR file.

The following build file has a simple ear task:

import org.gradle.plugins.ear.Ear

apply plugin: 'java'

version = '1.0'

task ear(type: Ear) {
 from 'src/main/application'
 lib {
 from fileTree('earLibs')
 }

Chapter 6

[171]

 baseName = 'gradle-enterprise-app'
}

assemble.dependsOn ear

We can execute the ear task and look in the build/libs directory to see the
resulting gradle-enterprise-app-1.0.ear file:

$gradle ear

:ear

BUILD SUCCESSFUL

Total time: 0.694 secs

web mrhaki$ ls build/libs

gradle-enterprise-app-1.0.ear

Using the Ear plugin
The best way to create an EAR file is by applying the Ear plugin to our project.
The plugin adds an ear task to our project and makes sure the assemble task
will build the EAR file instead of the JAR file of the project.

The plugin also adds two new dependency configurations: deploy and earlib.
Dependencies assigned to the deploy configuration are copied to the root of the
EAR file. The dependencies are not transitive. The dependencies assigned to the
earlib configuration are transitive and are copied to the lib directory in the EAR
file. We can customize the name of the lib directory in the EAR file with the project
or ear task property libDirName.

Any files in the src/main/application directory are also added to the EAR file.
We can change this directory location with the property appDirName, which is
added by the plugin. Here, we can place the file application.xml in the directory
META-INF, as an EAR descriptor file.

In the sample build file, we apply the Ear plugin and customize the ear task:

apply plugin: 'java'
apply plugin: 'ear'

version = '1.0'

repositories {
 flatDir {

Testing, Building, and Publishing Artifacts

[172]

 dirs 'lib'
 }
 mavenCentral()
}

dependencies {
 deploy 'sample:gradle-web:1.0'
 earlib 'org.slf4j:slfj4-impl:1.6.2'
}

ear.baseName = 'gradle-enterprise-app'

We can run the assemble or ear task to create the EAR file gradle-enterprise-
app-1.0.ear in the directory build/libs:

$ gradle clean assemble

:clean

:compileJava

:processResources

:classes

:ear

:assemble

BUILD SUCCESSFUL

Total time: 0.741 secs

web mrhaki$ ls build/libs

gradle-enterprise-app-1.0.ear

Chapter 6

[173]

Summary
In this chapter, we have learned how we can run JUnit or TestNG tests from a
Gradle build. We have seen how to get the test results and reports that are
generated by executing the tests.

With the application plugin, we have learned how to create a distributable ZIP file
with all the code and scripts necessary to run the Java application we have built.

We have learned how to upload our project artifacts to a repository so other projects
can use our code. We have seen that we can use Gradle to create an artifact that is
ready to be uploaded to a Maven repository.

To digitally sign our artifacts, we have seen how to use the signing plugin together
with locally installed PGP tools.

Also, we have seen how we can use the War and Ear plugins to create web and
enterprise applications with Gradle. We can use tasks, methods, and configuration
properties to configure the packaging output.

In the next chapter, we will look at how we can run and create a multi-module
project with Gradle. We will also learn how to create dependencies between projects
and how to apply a common configuration to multiple projects at once.

Multi-project Builds
When applications and projects get bigger, we usually split up several parts of the
application into separate projects. Gradle has great support for multi-project builds.
We can configure multiple projects in an easy way. Gradle is also able to resolve
dependencies between projects and will build the necessary projects in the right
order. So, we don't have to switch to a specific directory to build the code; Gradle
will resolve the correct project order for us.

In this chapter we will learn about multi-project configuration and dependencies.
First, we will look at how we can configure projects and tasks. Then we will use a
multi-project Java application to learn how we can have inter-project dependencies
and how Gradle resolves these for us.

Working with multi-project builds
Let's start with a simple multi-project structure. We have a root project called
garden with two other projects, tree and flower. The project structure is as follows:

garden/
 tree/
 flower/

We will add a new task printInfo to each of these projects. The task will print out
the name of the project to System.out. We must add a file build.gradle to each
project, with the following contents:

task printInfo << {
 println "This is ${project.name}"
}

Multi-project Builds

[176]

To execute the task for each project, we must first enter the correct directory and
then invoke the task with Gradle. Or, we run build.gradle for a specific project
with the -b argument of Gradle. We get the following output, if we run the task
for each project:

garden $ gradle -q printInfo

This is garden

garden $ cd tree

tree $ gradle -q printInfo

This is tree

tree $ cd ..

garden $ gradle -b flower/build.gradle printInfo

This is flower

We have multiple projects, but we haven't used Gradle's support for multi-project
builds yet. Let's reconfigure our projects and use Gradle multi-project support. We
need to add a new file, settings.gradle, in the garden directory. In this file, we
define the projects that are part of our multi-project build. We use the include()
method to set the projects that are part of our multi-project build. The project
with the file settings.gradle is automatically part of the build. We will use the
following line in the settings.gradle file to define our multi-project build:

include 'tree', 'flower'

Now, we can execute the printInfo task for each project with a single command.
We get the following output if we execute the task:

garden $ gradle printInfo

:printInfo

This is garden

:flower:printInfo

This is flower

:tree:printInfo

This is tree

BUILD SUCCESSFUL

Total time: 1.778 secs

Chapter 7

[177]

Executing tasks by project path
We see the output of each invocation of the task printInfo. The path of the project
task is also displayed. The root project is denoted by a colon (:) and has no explicit
name. The flower project is referenced as :flower, and the task printInfo of the
flower project is referenced as :flower:printInfo. The path of a task is the name
of the project and a colon (:) followed by the task name. The colon separates the
project and task name. We can reference a specific task in a project using this syntax
as well, from the command line. If we want to invoke the printInfo task of the
flower project, we can run the following command:

graden $ gradle :flower:printInfo

:flower:printInfo

This is flower

BUILD SUCCESSFUL

Total time: 2.335 secs

This also works for executing tasks in a root project from another project directory.
If we first go to the flower project directory and want to execute the printInfo task
of the root project, we must use the syntax :printInfo. We get the following output,
if we execute the printInfo task of the root project, the current project, and the
flower project, from the tree project directory:

garden $ cd tree

tree $ gradle :printInfo printInfo :flower:printInfo

:printInfo

This is garden

:tree:printInfo

This is tree

:flower:printInfo

This is flower

BUILD SUCCESSFUL

Total time: 1.707 secs

Multi-project Builds

[178]

Gradle takes a couple of steps to determine whether a project must be executed
as a single or multi-project build:

1. First, Gradle looks for a file settings.gradle in a directory with the
name master, at the same level as the current directory.

2. If settings.gradle is not found, the parent directories of the current
directory are searched for a settings.gradle file.

3. If settings.gradle is found, the project is executed as a single project build.
4. If a settings.gradle file is found, and the current project is part of the

multi-project definition, the project is executed as part of the multi-project
build. Otherwise, the project is executed as a single project build.

We can force Gradle to not look for a settings.gradle file in parent directories,
with the command-line argument --no-search-upward (or -u).

Using a flat layout
In our current project setup, we have defined a hierarchical layout of the projects.
We placed the settings.gradle file in the parent directory, and with the include()
method, we added the tree and flower projects to our multi-project build.

We can also use a flat layout to set up our multi-project build. We must first create a
master directory in the garden directory. We move our build.gradle and settings.
gradle file from the garden directory to the master directory. Because we don't have
a hierarchical layout any more, we must replace the include() method with the
includeFlat() method. Our settings.gradle file now looks like this:

includeFlat 'tree', 'flower'

The projects are referenced via the parent directory of the master directory. So, if
we define tree as an argument for the include() method, the actual path that is
used to resolve the project directory is master/../tree.

To invoke the printInfo task for each project, we run Gradle from the master
directory with the following command:

master $ gradle printInfo

:printInfo

This is master

:flower:printInfo

This is flower

Chapter 7

[179]

:tree:printInfo

This is tree

BUILD SUCCESSFUL

Total time: 2.373 secs

Defining projects
We have added a build.gradle file to the tree and flower projects, with an
implementation of the printInfo task. But, with the multi-project support of Gradle,
we don't have to do that. We can define all project tasks and properties in the root
build.gradle file. We can use this to define common functionality for all projects, in
a single place.

We can reference a project with the project() method and use the complete
name of the project as an argument. We must use a closure to define the tasks and
properties of the project.

For our example project, we first remove the build.gradle files from the tree and
flower directories. Next, we change the build.gradle file in the master directory.
Here, we define the printInfo tasks with the project() method for the tree and
flower projects:

task printInfo << {
 println "This is ${project.name}"
}

project(':flower') {
 task printInfo << {
 println "This is ${project.name}"
 }
}

project(':tree') {
 task printInfo << {
 println "This is ${project.name}"
 }
}

Multi-project Builds

[180]

If we execute the printInfo task from the master directory, we see that all
printInfo tasks of the projects are invoked:

master $ gradle printInfo

:printInfo

This is master

:flower:printInfo

This is flower

:tree:printInfo

This is tree

BUILD SUCCESSFUL

Total time: 2.434 secs

Gradle also has the allprojects{} script block to apply project tasks and properties
to all projects that are part of the multi-project build. We can rewrite our build.
gradle file and use the allprojects{} script block to get a clean definition of
the task without repeating ourselves:

allprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

If we invoke the printInfo task from the master directory, we see that each project
has the newly added task:

master $ gradle -q printInfo

This is master

This is flower

This is tree

If we only want to configure the subprojects tree and flower, we must use the
subprojects{} script block. With this script block, only tasks and properties of the
subprojects of a multi-project build are configured. In the following example build
file, we only configure the subprojects:

subprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

Chapter 7

[181]

If we invoke the printInfo task, we see that our master project no longer has the
printInfo task:

master mrhaki$ gradle -q printInfo

This is flower

This is tree

Gradle will not throw an exception if the printInfo task is not defined for a single
project. Gradle will first build a complete task graph for all the projects that are part
of the multi-project build. If any of the projects contains the task we want to run, the
task for that project is executed. Only when none of the projects has the task, will
Gradle fail the build.

We can combine the allprojects{} and subprojects{} script blocks, and the
project() method, to define common behavior and apply specific behavior for
specific projects. In the following sample build file, we add extra functionality to
the printInfo task, at different levels:

allprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

subprojects {
 printInfo << {
 println "Can be planted"
 }
}

project(':tree').printInfo << {
 println "Has leaves"
}

project(':flower') {
 printInfo.doLast {
 println 'Smells nice'
 }
}

Now when we execute the printInfo task, we get the following output:

$ gradle printInfo

:printInfo

This is master

Multi-project Builds

[182]

:flower:printInfo

This is flower

Can be planted

Smells nice

:tree:printInfo

This is tree

Can be planted

Has leaves

BUILD SUCCESSFUL

Total time: 1.692 secs

We have added specific behavior to the tree and flower projects, with the
project() method. But, we could also have added a build.gradle file to
the tree and flower projects and added the extra functionality there.

Filtering projects
To apply specific configuration to more than one project, we can also use project
filtering. In our build.gradle file, we must use the configure() method. We
define a filter based on the project names as argument of the method. In a closure,
we define the configuration for each found project.

In the following sample build file, we use a project filter to find the projects that
have names that start with an f and then apply a configuration to the project:

allprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

configure(allprojects.findAll { it.name.startsWith('f') }) {
 printInfo << {
 println 'Smells nice'
 }
}

Chapter 7

[183]

We have used the project name as a filter. We can also use project properties to
define a filter. Because project properties are only set after the build is defined,
either with a build.gradle file or with the project() method, we must use the
afterEvaluate() method. This method is invoked once all projects are configured
and project properties are set. We pass our custom configuration as a closure to the
afterEvaluate() method.

In the following example build file, we read the project property hasLeaves for the
projects tree and flower. If the property is true, we customize the printInfo task
for that project:

allprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

subprojects {
 afterEvaluate { project ->
 if (project.hasLeaves) {
 project.printInfo << {
 println 'Has leaves'
 }
 }
 }
}

project(':flower') {
 ext.hasLeaves = false
}

project(':tree') {
 ext.hasLeaves = true

}

When we execute the printInfo task from the master directory, we get the
following output:

master $ gradle printInfo

:printInfo

This is master

:flower:printInfo

This is flower

Multi-project Builds

[184]

:tree:printInfo

This is tree

Has leaves

BUILD SUCCESSFUL

Total time: 2.386 secs

Defining task dependencies between projects
If we invoke the printInfo task, we see that the printInfo task of the flower
project is executed before the tree project. Gradle uses the alphabetical order of the
projects, by default, to determine the execution order of the tasks. We can change this
execution order by defining explicit dependencies between tasks in different projects.

If we first want to execute the printInfo task of the tree project before the flower
project, we can define that the printInfo task of the flower project depends on
the printInfo task of the tree project. In the following example build file, we will
change the dependency of the printInfo task in the flower project. We will use the
dependsOn() method to reference the printInfo task of the tree project:

allprojects {
 task printInfo << {
 println "This is ${project.name}"
 }
}

project(':flower') {
 printInfo.dependsOn ':tree:printInfo'
}

If we execute the printInfo task, we see in the output that the printInfo task of the
tree project is executed before the printInfo task of the flower project:

master $ gradle printInfo

:printInfo

This is master

:tree:printInfo

This is tree

:flower:printInfo

Chapter 7

[185]

This is flower

BUILD SUCCESSFUL

Total time: 2.188 secs

Defining configuration dependencies
Besides task dependencies between projects, we can also include other configuration
dependencies. For example, we could have a project property, set by one project, that
is used by another project. Gradle will evaluate the projects in alphabetical order. In
the next example, we create a new build.gradle file in the tree directory and set
a property on the root project:

rootProject.ext.treeMessage = 'I am a tree'

We also create a build.gradle file in the flower project and set a project property
with a value based on the root project property set by the tree project:

ext.message = rootProject.hasProperty('treeMessage') ?
 rootProject.treeMessage : 'is not set'

printInfo.doLast {
 println "Tree say ${message}"
}

When we execute the printInfo task, we get the following output:

master $ gradle printInfo

:printInfo

This is master

:flower:printInfo

This is flower

Tree say is not set

:tree:printInfo

This is tree

BUILD SUCCESSFUL

Total time: 2.254 secs

Multi-project Builds

[186]

Note that the printInfo task in the flower project cannot display the value of
the root project property, because the value is not yet set by the tree project.
To change the evaluation order of the project, we can explicitly define that the
flower project depends on the tree project, with the evaluationDependsOn()
method. We change the build.gradle file in the flower directory and add
evaluationDependsOn(':tree') to the top of the file:

evaluationDependsOn ':tree'

ext.message = rootProject.hasProperty('treeMessage') ?
 rootProject.treeMessage : 'is not set'

printInfo.doLast {
 println "Tree say ${message}"

}

When we execute the printInfo task again, we see in the output that the value
of the root project property is available in the flower project:

master $ gradle printInfo

:printInfo

This is master

:flower:printInfo

This is flower

Tree say I am a tree

:tree:printInfo

This is tree

BUILD SUCCESSFUL

Total time: 2.303 secs

Working with Java multi-project builds
In a Java project, we usually have compile or runtime dependencies between
projects. The output of one project is a compile dependency for another project,
for example. This is very common in Java projects. Let's create a Java project with
a common project that contains a Java class used by other projects. We will add a
services project that references the class in the common project. Finally, we will add
a web project with a Java servlet class that uses classes from the services project.

Chapter 7

[187]

We have the following directory structure for our project:

root/
build.gradle
settings.gradle
common/
 src/main/java/sample/gradle/util/
 Logger.java
services/sample
 src/main/java/sample/gradle/
 api/
 SampleService.java
 impl/
 SampleImpl.java
 src/test/java/sample/gradle/impl/
 SampleTest.java
web/
 src/main/java/sample/gradle/web/
 SampleServlet.java
 src/main/webapp/WEB-INF/
 web.xml

In the root directory, we create a settings.gradle file. We will use the include()
method to add the common, web, and services/sample projects to the build:

include 'common', 'services:sample', 'web'

Next, we create a build.gradle file in the root directory. We apply the Java plugin
to each subproject and add a testCompile dependency on the JUnit libraries. This
configuration is applied to each subproject in our build. Our :services:sample
project has a dependency on the common project. We will configure this dependency
in the project configuration of :services:sample. We will use the project()
method to define this inter-project dependency. Our web project uses classes from
both the :common and the :services:sample projects. We only have to define the
dependency on the :services:sample project. Gradle will automatically add the
dependencies for that project to the :web project. In our project, this means the
:common project is also added as a transitive project dependency, and we can use
the Logger class from that project in our SampleServlet class. We will add another
external dependency for the Servlet API to our :web project and also apply the War
plugin to our :web project:

subprojects {
 apply plugin: 'java'

 repositories {

Multi-project Builds

[188]

 mavenCentral()
 }

 dependencies {
 testCompile 'junit:junit:4.8.2'
 }
}

project(':services:sample') {
 dependencies {
 compile project(':common')
 }
}

project(':web') {
 apply plugin: 'war'

 dependencies {
 compile project(':services:sample')
 compile 'javax.servlet:servlet-api:2.5'
 }
}

The project dependencies are also called lib dependencies. These dependencies
are used to evaluate the execution order of the projects. Gradle will analyze the
dependencies and then decide which project needs to be built first, so the resulting
classes can be used by dependent projects.

Let's build our project with the following command from the root directory:

root $ gradle build

:common:compileJava

:common:processResources UP-TO-DATE

:common:classes

:common:jar

:common:assemble

:common:compileTestJava UP-TO-DATE

:common:processTestResources UP-TO-DATE

:common:testClasses UP-TO-DATE

:common:test

:common:check

:common:build

:services:compileJava UP-TO-DATE

Chapter 7

[189]

:services:processResources UP-TO-DATE

:services:classes UP-TO-DATE

:services:jar

:services:assemble

:services:compileTestJava UP-TO-DATE

:services:processTestResources UP-TO-DATE

:services:testClasses UP-TO-DATE

:services:test

:services:check

:services:build

:services:sample:compileJava

:services:sample:processResources UP-TO-DATE

:services:sample:classes

:services:sample:jar

:web:compileJava

:web:processResources UP-TO-DATE

:web:classes

:web:war

:web:assemble

:web:compileTestJava UP-TO-DATE

:web:processTestResources UP-TO-DATE

:web:testClasses UP-TO-DATE

:web:test

:web:check

:web:build

:services:sample:assemble

:services:sample:compileTestJava

:services:sample:processTestResources UP-TO-DATE

:services:sample:testClasses

:services:sample:test

:services:sample:check

:services:sample:build

BUILD SUCCESSFUL

Total time: 5.19 secs

Multi-project Builds

[190]

A lot of tasks are executed, but we don't have to worry about their dependencies.
Gradle will make sure the correct order of tasks is executed.

We can also have project dependencies based on a configuration in a project.
Suppose we define a separate JAR artifact with only the SampleService class in
the :services:sample project. We can add this as a separate dependency to our
:web project. In the following example build file, we create a new JAR file with the
SampleService class and then use that as a lib dependency in the :web project:

subprojects {
 apply plugin: 'java'

 repositories {
 mavenCentral()
 }

 dependencies {
 testCompile 'junit:junit:4.8.2'
 }
}

project(':services:sample') {
 configurations {
 api
 }

 task apiJar(type: Jar) {
 baseName = 'api'
 dependsOn classes
 from sourceSets.main.output
 include 'sample/gradle/api/SampleService.class'
 }

 artifacts {
 // Add output of apiJar task to api configuration.
 // so we can reference it from the :web project.
 api apiJar
 }

 dependencies {
 compile project(':common')
 }
}

Chapter 7

[191]

project(':web') {
 apply plugin: 'war'

 dependencies {
 compile project(path: ':services:sample', configuration:
'api')
 compile project(':services:sample')
 compile 'javax.servlet:servlet-api:2.5'
 }
}

Using partial builds
Because of the lib dependencies between the projects, we can execute partial builds in
Gradle. This means we don't have to be in the root directory of our project to build the
necessary projects. We can change to a project directory and invoke the build task from
there, and Gradle will build all necessary projects first and then the current project.

Let's change to the services/sample directory and invoke the build task from there
and look at the output:

root $ cd services/sample

sample $ gradle build

:common:compileJava UP-TO-DATE

:common:processResources UP-TO-DATE

:common:classes UP-TO-DATE

:common:jar UP-TO-DATE

:services:sample:compileJava UP-TO-DATE

:services:sample:processResources UP-TO-DATE

:services:sample:classes UP-TO-DATE

:services:sample:jar UP-TO-DATE

:services:sample:assemble UP-TO-DATE

:services:sample:compileTestJava UP-TO-DATE

:services:sample:processTestResources UP-TO-DATE

:services:sample:testClasses UP-TO-DATE

:services:sample:test UP-TO-DATE

:services:sample:check UP-TO-DATE

:services:sample:build UP-TO-DATE

BUILD SUCCESSFUL

Total time: 3.201 secs

Multi-project Builds

[192]

The :common project is built before our :services:sample project. If we don't
want the projects we are dependent on to be built, we must use the --no-rebuild
(or -a) command-line argument. Gradle will now skip the building of projects that
our project depends on and will use cached versions of the dependencies.

When we use the -a argument, while invoking the build task, we get the
following output:

sample $ gradle -a build

:services:sample:compileJava UP-TO-DATE

:services:sample:processResources UP-TO-DATE

:services:sample:classes UP-TO-DATE

:services:sample:jar UP-TO-DATE

:services:sample:assemble UP-TO-DATE

:services:sample:compileTestJava UP-TO-DATE

:services:sample:processTestResources UP-TO-DATE

:services:sample:testClasses UP-TO-DATE

:services:sample:test UP-TO-DATE

:services:sample:check UP-TO-DATE

:services:sample:build UP-TO-DATE

BUILD SUCCESSFUL

Total time: 3.237 secs

If we invoke the build task on our :services:sample project, the :common project is
also built. But there is a catch, as only the jar task of the :common project is executed.
Normally, the build task also runs tests and executes the check task. Gradle will
skip those tasks only if the project is built as a lib dependency.

If we want to execute the tests and checks for the dependency projects, we must
execute the buildNeeded task. Gradle will then do a complete build of all dependent
projects. Let's execute the buildNeeded task from the services/sample directory
and look at the output:

sample $ gradle buildNeeded

:common:compileJava UP-TO-DATE

:common:processResources UP-TO-DATE

:common:classes UP-TO-DATE

:common:jar UP-TO-DATE

:common:assemble UP-TO-DATE

Chapter 7

[193]

:common:compileTestJava UP-TO-DATE

:common:processTestResources UP-TO-DATE

:common:testClasses UP-TO-DATE

:common:test UP-TO-DATE

:common:check UP-TO-DATE

:common:build UP-TO-DATE

:common:buildNeeded UP-TO-DATE

:services:sample:compileJava UP-TO-DATE

:services:sample:processResources UP-TO-DATE

:services:sample:classes UP-TO-DATE

:services:sample:jar UP-TO-DATE

:services:sample:assemble UP-TO-DATE

:services:sample:compileTestJava UP-TO-DATE

:services:sample:processTestResources UP-TO-DATE

:services:sample:testClasses UP-TO-DATE

:services:sample:test UP-TO-DATE

:services:sample:check UP-TO-DATE

:services:sample:build UP-TO-DATE

:services:sample:buildNeeded UP-TO-DATE

BUILD SUCCESSFUL

Total time: 3.335 secs

If we have made changes to our :services:sample project, we might also want
projects that are dependent on the sample project to be built. We can use this
to make sure we have not broken any code that depends on our project. Gradle
has a buildDependents task to do this. For example, let's execute this task from
our :services:sample project; our :web project is also built because it has a
dependency on the :services:sample project. We get the following output
when we execute the buildDependents task:

sample $ gradle buildDependents

:common:compileJava UP-TO-DATE

:common:processResources UP-TO-DATE

:common:classes UP-TO-DATE

:common:jar UP-TO-DATE

:services:sample:compileJava UP-TO-DATE

Multi-project Builds

[194]

:services:sample:processResources UP-TO-DATE

:services:sample:classes UP-TO-DATE

:services:sample:apiJar

:services:sample:jar UP-TO-DATE

:web:compileJava

:web:processResources UP-TO-DATE

:web:classes

:web:war

:web:assemble

:web:compileTestJava UP-TO-DATE

:web:processTestResources UP-TO-DATE

:web:testClasses UP-TO-DATE

:web:test

:web:check

:web:build

:web:buildDependents

:services:sample:assemble UP-TO-DATE

:services:sample:compileTestJava UP-TO-DATE

:services:sample:processTestResources UP-TO-DATE

:services:sample:testClasses UP-TO-DATE

:services:sample:test UP-TO-DATE

:services:sample:check UP-TO-DATE

:services:sample:build UP-TO-DATE

:services:sample:buildDependents

BUILD SUCCESSFUL

Total time: 3.896 secs

Using the Jetty plugin
In the previous section, we created a Java project with a web subproject.
The web project has a simple servlet. To execute the servlet, we must create a
WAR file and deploy the WAR file to a servlet container such as Tomcat or Jetty.

Chapter 7

[195]

With the Jetty plugin, we can run our web project from the command line in a Jetty
web container. We don't have to install Jetty on our computer; we only need to apply
the Jetty plugin to our project. The plugin will take care of configuring Jetty and
starting the web container. If everything is okay, we can open a web browser and
access our servlet.

To add the Jetty plugin to our web project, let's create a new file, build.gradle,
in the web directory. Here, we use the apply() method to add the Jetty plugin to
the project:

apply plugin: 'jetty'

The plugin adds the following tasks to our project: jettyRun, jettyRunWar, and
jettyStop. The following table shows the different tasks:

Task Depends on Type Description
jettyRun classes JettyRun Start a Jetty web

container and deploy
the exploded web
application.

jettyRunWar war JettyRunWar Start a Jetty web
container and deploy
the WAR file.

jettyStop - JettyStop Stop a running Jetty
web container.

We can test our servlet in a web browser after we execute the jettyRun or jettyWar
task. We get the following output when we execute the jettyRun task from the root
of the multi-project build:

root $ gradle :web:jettyRun

:common:compileJava UP-TO-DATE

:common:processResources UP-TO-DATE

:common:classes UP-TO-DATE

:common:jar UP-TO-DATE

:services:sample:compileJava UP-TO-DATE

:services:sample:processResources UP-TO-DATE

:services:sample:classes UP-TO-DATE

:services:sample:jar UP-TO-DATE

:web:compileJava UP-TO-DATE

:web:processResources UP-TO-DATE

:web:classes UP-TO-DATE

> Building > :web:jettyRun > Running at http://localhost:8080/web

Multi-project Builds

[196]

Gradle will keep running, and at the end, we see that the application is running
at http://localhost:8080/web. We can open a web browser and access our
web application. In the following screenshot, we see the output of the servlet:

To stop the Jetty web container, we press Ctrl + C at the command line, to return
to our prompt.

We can change the port number via the Project convention property, httpPort,
added by the Jetty plugin or the task property, httpPort, of the jettyRun and
jettyRunWar tasks. To change the context path, we can set the contextPath
property of the jettyRun and jettyRunWar tasks.

If we want the Jetty container to automatically scan for changes, we can set the
reload property to automatic. If the property is set to manual, we must press Enter
on the command line, to reload changes. We can set the scan interval in seconds,
with the property scanIntervalSeconds.

In the following sample build file, we customize the Jetty web container with another
HTTP port, context path, and automatic reloading:

apply plugin: 'jetty'

Chapter 7

[197]

httpPort = 8090

jettyRun {
 contextPath = 'sample'
 reload = 'automatic'
 scanIntervalSeconds = 10
}

We can even customize the Jetty container further with custom Jetty configuration files.
We could use the jettyRun task property, jettyConfig, to use configuration files. Or,
we can add extra runtime libraries with the additionalRuntimeJars property.

If we want to use the jettyStop task, we must also define the stopPort and
stopKey properties in either our Project or task. If we have defined these
properties, we can open a new command-line prompt and invoke the jettyStop
task to stop a running Jetty web container.

In the following example build file, we apply some of these properties and methods
to customize the Jetty configuration:

apply plugin: 'jetty'

configurations {
 jettyAdditionalLibs
}

dependencies {
 jettyAdditionalLibs 'org.slf4j:slf4j-simple:1.6.6'
}

// Properties for stopping Jetty with jettyStop
stopPort = 8109
stopKey = 'JettyStop'

jettyRun {
 // External Jetty configuration file.
 jettyConfig = file('src/jetty/jetty.xml')

 // Extra libraries for Jetty runtime.
 additionalRuntimeJars configurations.jettyAdditionalLibs
}

Multi-project Builds

[198]

Summary
Multi-project builds are very common in software projects. Gradle has great support
for multi-project builds. We can use a hierarchical layout as project structure, but we
can easily customize this and use other layouts.

Configuring projects is easy and can be done in one place, at the root of the projects.
We can also add project configurations at the project level itself. Not only can we
define dependencies between projects on a project library level, but we can also
do so via configuration or task dependencies. Gradle will resolve the correct way
to build the complete project, so we don't have to worry too much about that.

Because Gradle knows which projects will be involved before a task is executed,
we can do partial multi-project builds. Gradle will automatically build project
dependencies, which are necessary for our current project. And we can use a
single task to build the projects that depend on our current project.

Finally, we saw how we can run our web application code in a Jetty web
container, with the Jetty plugin. We apply the plugin and execute the jettyRun
or jettyRunWar tasks to run our code as a web application. We can open a web
browser and execute our code.

In the next chapter, we will look at how we can use other languages besides Java,
with Gradle.

Mixed Languages
We have seen how to use Gradle for projects with Java code. Gradle has support
for other languages as well. In the last couple of years, other languages for Java
Virtual Machine have emerged. In this chapter, we will take a look at Gradle's
support for the Groovy and Scala languages. Both languages are supported by
Java Virtual Machine.

We will see how we can apply the correct plugin and configuration to our Gradle
build files to work with the different languages.

Gradle also supports C++. The C++ plugin adds support to compile source files.
Javascript and Closure plugins are available as third-party plugins, which add
support for those languages. We will not cover this support in this book. We
will focus on the JVM languages—Groovy and Scala.

Using the Groovy plugin
To use Groovy sources in our project, we can apply the Groovy plugin. The Groovy
plugin makes it possible to compile Groovy source files to class files. The project can
contain both Java and Groovy source files. The compiler that Gradle uses is a joint
compiler that can compile Java and Groovy source files.

The plugin also adds new tasks to our build. To compile the Groovy source files we
can invoke the compileGroovy task. Test sources written in Groovy can be compiled
with the compileTestGroovy task. Also, a compile<SourceSet>Groovy task is
added for each extra source set in our build definition. So, if we create a new source
set with the name api, there will be a compileApiGroovy task.

Mixed Languages

[200]

In the following example build file, we apply the Groovy plugin:

apply plugin: 'groovy'

If we invoke the tasks task to see what is available, we get the following output:

$ gradle tasks --all

:tasks

--

All tasks runnable from root project

--

Build tasks

assemble - Assembles all Jar, War, Zip, and Tar archives. [jar]

build - Assembles and tests this project. [assemble, check]

buildDependents - Assembles and tests this project and all projects that
depend on it. [build]

buildNeeded - Assembles and tests this project and all projects it
depends on. [build]

classes - Assembles the main classes.

 compileGroovy - Compiles the main Groovy source.

 compileJava - Compiles the main Java source.

 processResources - Processes the main resources.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the main classes. [classes]

testClasses - Assembles the test classes. [classes]

 compileTestGroovy - Compiles the test Groovy source.

 compileTestJava - Compiles the test Java source.

 processTestResources - Processes the test resources.

Documentation tasks

groovydoc - Generates Groovydoc API documentation for the main source
code. [classes]

javadoc - Generates Javadoc API documentation for the main source code.
[classes]

Chapter 8

[201]

Help tasks

dependencies - Displays the dependencies of root project 'groovy'.

help - Displays a help message

projects - Displays the sub-projects of root project 'groovy'.

properties - Displays the properties of root project 'groovy'.

tasks - Displays the tasks runnable from root project 'groovy' (some of
the displayed tasks may belong to subprojects).

Verification tasks

check - Runs all checks. [test]

test - Runs the unit tests. [classes, testClasses]

Rules

Pattern: build<ConfigurationName>: Assembles the artifacts of a
configuration.

Pattern: upload<ConfigurationName>: Assembles and uploads the artifacts
belonging to a configuration.

Pattern: clean<TaskName>: Cleans the output files of a task.

BUILD SUCCESSFUL

Total time: 5.175 secs

Note that we also got all the tasks from the Java plugin. This is because the Groovy
plugin automatically includes the Java plugin. So, even though we only defined the
Groovy plugin in our build file, the Java plugin is applied as well.

The extra compileGroovy and compileTestGroovy tasks are visible in the command
output. The new tasks are dependency tasks for the classes and testClasses
tasks. If we invoke the classes task, the compileGroovy task is also executed.

The plugin adds the groovy configuration. The Groovy compiler uses this
configuration. So, to compile Groovy source files in our project, we must set
a dependency on the groovy configuration.

Mixed Languages

[202]

To compile Groovy source files, we must add a dependency, with the Groovy library
we want to use, to the groovy configuration. We might expect that Gradle will use
the Groovy version that is used by Gradle, but the compilation task is independent of
the Groovy version used by Gradle. We have to define the Groovy library ourselves.

It is good to be independent of the Groovy libraries shipped with Gradle, because
we can now use the Groovy version we really need. When we do want to use
the Groovy libraries shipped with Gradle, we can use the special dependency
localGroovy(). For a normal Groovy project this is not advised, but for plugin
development it is useful.

First, we create a Groovy source file so we can compile it with Gradle. The default
source directory for Groovy source files is src/main/groovy. Let's create a new file,
in the directory src/main/groovy/gradle/sample, with the name Sample.groovy.
The following code shows the contents of this file:

package gradle.sample

import groovy.transform.ToString

@ToString
class Sample {
 String name
}

Next, we create a Gradle build file and apply the Groovy plugin. We add the Maven
central repository and a Groovy dependency to the groovy configuration:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy', version:
'1.8.6'
}

When we run the build task, we get the following output:

$ gradle build

:compileJava UP-TO-DATE

Chapter 8

[203]

:compileGroovy

Download http://repo1.maven.org/maven2/org/codehaus/groovy/groovy/1.8.6/
groovy-1.8.6.pom

Download http://repo1.maven.org/maven2/org/codehaus/groovy/groovy/1.8.6/
groovy-1.8.6.jar

:processResources UP-TO-DATE

:classes

:jar

:assemble

:compileTestJava UP-TO-DATE

:compileTestGroovy UP-TO-DATE

:processTestResources UP-TO-DATE

:testClasses UP-TO-DATE

:test

:check

:build

BUILD SUCCESSFUL

Total time: 9.595 secs

When we don't have the specified Groovy library in our cache, it is downloaded
from the Maven repository, by Gradle. The source code file is compiled, and if we
look in the build/classes directory, we see the compiled class file.

The Groovy plugin also adds new source set properties. The following table shows
the extra properties:

Property name Type Description
groovy org.gradle.api.file.

SourceDirectorySet
The Groovy source files for this
project. Contains both .java and
.groovy source files if they are in
the groovy directory.

groovy.srcDirs java.util.Set
<java.io.File>

Directories with the Groovy source
files. Can also contain Java source
files for joint compilation.

allGroovy org.gradle.api.
file.FileTree

Only the Groovy source files. All
files with extension .groovy are
part of this collection.

Mixed Languages

[204]

We extend our previous build file and add the task groovySourceSetsProperties.
We print out the extra properties and their values with this task. The build now
looks like this:

apply plugin: 'groovy'

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy', version:
'1.8.6'
}

task groovySourceSetProperties << {
 sourceSets {
 main {
 println "groovy.srcDirs = ${groovy.srcDirs}"
 println "groovy.files = ${groovy.files.name}"
 println "allGroovy.files = ${allGroovy.files.name}"
 }
 }
}

When we run the task groovySourceSetProperties on the command line, we see
the following output:

$ gradle groovySourceSetProperties

:groovySourceSetProperties

groovy.srcDirs = [/gradle-book/samples/chapter8/groovy/src/main/groovy]

groovy.files = [Sample.groovy]

allGroovy.files = [Sample.groovy]

BUILD SUCCESSFUL

Total time: 2.997 secs

When our Java code uses Groovy classes, and vice versa, we can use the joint
compilation feature. We must make sure both the Java and Groovy source files
are in the src/main/groovy directory.

Chapter 8

[205]

Creating documentation with the
Groovy plugin
The Groovy plugin also adds the groovydoc task. The groovydoc task is like
the javadoc task from the Java plugin. Gradle uses the Groovydoc tool, which
is available from the Groovy version that we have defined as a dependency to
the groovy configuration.

The task has several properties we can change. For example, we can set the
header and footer to be used in the generated documentation.

In the following build file, we configure the groovydoc task:

apply plugin: 'groovy'

version = 1.0

repositories {
 mavenCentral()
}

dependencies {
 groovy group: 'org.codehaus.groovy', name: 'groovy', version:
'1.8.6'
}

groovydoc {
 header = 'GroovyDoc for sample project'
 footer = "Generated documentation - $version"
 docTitle = 'GroovyDoc Title'
 windowTitle = docTitle
 use = true // Create class and package usage pages

 // Exclude files, use include to include files
 exclude '**/*Doc.groovy'
}

When we run the groovydoc task, we can see the generated documentation in
the build/docs/groovydoc directory. We must open the index.html file in
our web browser to see the result.

Mixed Languages

[206]

Using the Scala plugin
We can also use Gradle to work with Scala source files. We can have a Scala-only
project, or we can have both Java and Scala source files in our project. We must
apply the Scala plugin to enable Scala support for our build. The plugin adds new
tasks to compile the Scala source files. With the compileScala task, we compile our
main Scala source files. The source files must be in the src/main/scala directory.
The compileTestScala task compiles all Scala source code files that are in the src/
test/scala directory. The plugin also adds a compile<SourceSet>Scala task for
custom-defined source sets in our build.

The compile tasks support both Java and Scala source files with joint compilation. We
can place our Java source files in say the src/main/java directory of our project and
the Scala source files in the src/main/scala directory. The compiler will compile
both types of files. To be able to compile the files, we must add dependencies to
the Scala tools in our build file. The Scala plugin adds the scalaTools dependency
configuration to our build. We must assign the correct dependencies from a Maven
repository to this configuration, so that Gradle can invoke the compiler to compile
the source files.

Let's create a simple Scala source file in the directory src/main/scala/gradle/
sample and save it as Sample.scala:

package gradle.sample

class Sample(val name: String) {
 def getName() = name
}

In the following example build file, we apply the Scala plugin. Also, in the
dependencies section we set the correct dependencies for the compiler:

apply plugin: 'scala'

repositories.mavenCentral()

ext {
 scala = [version: '2.9.2', group: 'org.scala-lang']
}

dependencies {
 scalaTools "${scala.group}:scala-compiler:${scala.version}"
 scalaTools "${scala.group}:scala-library:${scala.version}"
}

Chapter 8

[207]

To build the project, we invoke the build task and get the following output:

$ gradle build

:compileJava UP-TO-DATE

:compileScala

Download http://repo1.maven.org/maven2/org/scala-lang/scala-
library/2.9.2/scala-library-2.9.2.pom

Download http://repo1.maven.org/maven2/org/scala-lang/scala-
library/2.9.2/scala-library-2.9.2.jar

Download http://repo1.maven.org/maven2/org/scala-lang/scala-
compiler/2.9.2/scala-compiler-2.9.2.pom

Download http://repo1.maven.org/maven2/org/scala-lang/scala-
compiler/2.9.2/scala-compiler-2.9.2.jar

:processResources UP-TO-DATE

:classes

:jar

:assemble

:compileTestJava UP-TO-DATE

:compileTestScala UP-TO-DATE

:processTestResources UP-TO-DATE

:testClasses UP-TO-DATE

:test

:check

:build

BUILD SUCCESSFUL

Total time: 17.167 secs

Note how the compileScala and compileTestScala tasks are dependency tasks
for the classes and testClasses tasks respectively. So, the newly added tasks
are automatically part of the normal build tasks we know from our Java projects.
The Scala plugin will even automatically include the Java plugin, if we don't apply
the Java plugin ourselves.

Mixed Languages

[208]

We can define a custom source set in our project. The Scala plugin adds a compile
task for each source set to our project. In the following Gradle build file, we add a
new source set with the name actors:

apply plugin: 'scala'

repositories.mavenCentral()

ext {
 scala = [version: '2.9.2', group: 'org.scala-lang']
}

dependencies {
 scalaTools "${scala.group}:scala-compiler:${scala.version}"
 scalaTools "${scala.group}:scala-library:${scala.version}"

 compile "${scala.group}:scala-library:${scala.version}"
}

sourceSets {
 actors
}

When we invoke the tasks command, we see that Gradle added
compileActorsScala to the list of available tasks:

$ gradle tasks --all

:tasks

--

All tasks runnable from root project

--

Build tasks

actorsClasses - Assembles the actors classes.

 compileActorsJava - Compiles the actors Java source.

 compileActorsScala - Compiles the actors Scala source.

 processActorsResources - Processes the actors resources.

assemble - Assembles all Jar, War, Zip, and Tar archives. [jar]

build - Assembles and tests this project. [assemble, check]

Chapter 8

[209]

buildDependents - Assembles and tests this project and all projects that
depend on it. [build]

buildNeeded - Assembles and tests this project and all projects it
depends on. [build]

classes - Assembles the main classes.

 compileJava - Compiles the main Java source.

 compileScala - Compiles the main Scala source.

 processResources - Processes the main resources.

clean - Deletes the build directory.

jar - Assembles a jar archive containing the main classes. [classes]

testClasses - Assembles the test classes. [classes]

 compileTestJava - Compiles the test Java source.

 compileTestScala - Compiles the test Scala source.

 processTestResources - Processes the test resources.

...

The task actorsClasses is added and has all the compile tasks for the actors
source set. When we want the actorsClasses task to be part of the build task,
we can assign it as a task dependency to the jar task. In the following example
build file, we use the from() method of the jar task to assign the output of the
actors source set as part of the JAR file contents:

apply plugin: 'scala'

repositories.mavenCentral()

ext {
 scala = [version: '2.9.2', group: 'org.scala-lang']
}

dependencies {
 scalaTools "${scala.group}:scala-compiler:${scala.version}"
 scalaTools "${scala.group}:scala-library:${scala.version}"

 compile "${scala.group}:scala-library:${scala.version}"
}

sourceSets {
 actors
}

jar {
 from sourceSets.actors.output
}

Mixed Languages

[210]

When we execute the build task, our source files in the source set actors are
compiled and added to the JAR file.

The Scala plugin also adds several new properties to a source set. The following
table shows the extra properties:

Property name Type Description
scala org.gradle.api.file.

SourceDirectorySet
The Scala source files for this
project; contains both .java and
.scala source files if they are in
the scala directory.

scala.srcDirs java.util.Set
<java.io.File>

Directories with the Scala source
files; can also contain Java source
files for joint compilation.

allScala org.gradle.api.
file.FileTree

Only the Scala source files. All
files with extension .scala are
part of this collection.

Let's create a new task, scalaSourceSetsProperties, to see the contents of each
of these properties:

apply plugin: 'scala'

repositories.mavenCentral()

ext {
 scala = [version: '2.9.2', group: 'org.scala-lang']
}

dependencies {
 scalaTools "${scala.group}:scala-compiler:${scala.version}"
 scalaTools "${scala.group}:scala-library:${scala.version}"

 compile "${scala.group}:scala-library:${scala.version}"
}

task scalaSourceSetsProperties << {
 sourceSets {
 main {
 println "scala.srcDirs = ${scala.srcDirs}"
 println "scala.files = ${scala.files.name}"
 println "allScala.files = ${allScala.files.name}"
 }
 }
}

Chapter 8

[211]

When we invoke the scalaSourceSetsProperties task from the command-line, we
get the following output:

$ gradle scalaSourceSetsProperties

:scalaSourceSetsProperties

scala.srcDirs = [/samples/chapter8/scala/src/main/scala]

scala.files = [Sample.scala]

allScala.files = [Sample.scala]

BUILD SUCCESSFUL

Total time: 3.036 secs

Creating documentation with the Scala plugin
The Scala plugin also adds a scaladoc task to our build. We can use this task to
generate documentation from the source files. This is like the javadoc task from
the Java plugin. We can configure the scaladoc task to provide extra options.

In the following example build file, we add a title to the generated documentation
by configuring the scaladoc task:

import org.gradle.api.tasks.scala.*

apply plugin: 'scala'

version = 2.1

repositories.mavenCentral()

ext {
 scala = [version: '2.9.2', group: 'org.scala-lang']
}

dependencies {
 scalaTools "${scala.group}:scala-compiler:${scala.version}"
 scalaTools "${scala.group}:scala-library:${scala.version}"

 compile "${scala.group}:scala-library:${scala.version}"
}

scaladoc.title = 'Scala documentation'

Mixed Languages

[212]

When we invoke the scaladoc task, Gradle will generate the documentation,
and the result is in build/docs/scaladoc. We can open the file index.html
in our web browser to see the generated documentation.

Summary
In this chapter, we learned how we can work with Groovy and Scala source files in
a Gradle project. We applied the Groovy or Scala plugins to our project and saw that
Gradle added the tasks to compile the source files, to the project. We learned that we
must add a dependency to the correct Groovy or Scala version to the dependency
configuration added by the plugin. Both plugins will include the Java plugin as well.

We also learned that the plugins also provide some new properties for source sets
so we can, for example, find all Groovy or Scala source files in a source set.

In the next chapter, we take a look at how we can add code quality tools to our
Gradle builds.

Maintaining Code Quality
While working on a project, we want to have some kind of tooling or process in
place that we can use to see if our code follows certain standards; either our code
has no common coding problems or calculates the complexity of the code.

We need these tools to write better code. Better code means it will be easier to
maintain, and this lowers the cost of maintaining the code. In a project team, we
want to make sure that the code follows the same standards defined by the project
team. A company could define a set of standards that developers need to follow, as
a condition for the project to be started.

There are tools already available for Java and Groovy projects to analyze and check
source code, such as Checkstyle, JDepend, PMD, FindBugs, CodeNarc, and Sonar.
Gradle has plugins for each of these tools. In this chapter, we will take a look at the
plugins and learn how to use them in our projects.

Using the Checkstyle plugin
If we are working on a Java project, and apply the Java plugin to our project, we
get an empty task with the name check. This is a dependency task for the build
task. This means that when we execute the build task, the check task is executed
as well. We can write our own tasks to check something in our project and make it
a dependency task for the check task. So if the check task is executed, our own task
is executed as well. And not only the tasks we write ourselves, but the plugins also,
can add new dependency tasks to the check task.

We will see in this chapter that most plugins will add one or more tasks as a
dependency task to the check task. This means that we can apply a plugin to our
project, and when we invoke the check or build task, the extra tasks of the plugin
are executed automatically.

Maintaining Code Quality

[214]

Also, the check task is dependent on the test task. Gradle will always make sure
the test task is executed before the check task, so we know that all source files and
test source files are compiled, and tests are run before the code is checked. To add the
Checkstyle analysis to our project, we simply have to apply the Checkstyle plugin:

apply plugin: 'checkstyle'

If we invoke the tasks task from the command line, we can see that new tasks have
been added by the plugin:

$ gradle tasks --all

...

Verification tasks

check - Runs all checks. [classes, test, testClasses]

 checkstyleMain - Run Checkstyle analysis for main classes

 checkstyleTest - Run Checkstyle analysis for test classes

test - Runs the unit tests. [classes, testClasses]

...

The tasks checkstyleMain and checkstyleTest are added as a dependency for
the check task. The tasks run the Checkstyle analysis for the main and test classes.

We cannot execute these tasks yet, because we have to add a Checkstyle
configuration file to our project. This file contains the rules that we want applied
for our code. The plugin will look for a file checkstyle.xml in the directory
config/checkstyle in our project. This is the default location and filename,
but we can change it. Let's create a configuration file with the following content:

<?xml version="1.0"?>
<!DOCTYPE module PUBLIC
 "-//Puppy Crawl//DTD Check Configuration 1.3//EN"
 "http://www.puppycrawl.com/dtds/configuration_1_3.dtd">
<module name="Checker">
 <module name="JavadocPackage"/>
 <module name="NewlineAtEndOfFile"/>
 <module name="RegexpSingleline">
 <property name="format" value="\s+$"/>
 <property name="minimum" value="0"/>
 <property name="maximum" value="0"/>
 <property name="message" value="Line has trailing spaces."/>

Chapter 9

[215]

 </module>

 <module name="TreeWalker">
 <module name="IllegalImport"/>
 <module name="RedundantImport"/>
 <module name="UnusedImports"/>
 <module name="AvoidNestedBlocks"/>
 <module name="EmptyBlock"/>
 <module name="LeftCurly"/>
 <module name="NeedBraces"/>
 <module name="RightCurly"/>
 <module name="DesignForExtension"/>
 <module name="FinalClass"/>
 <module name="HideUtilityClassConstructor"/>
 <module name="InterfaceIsType"/>
 <module name="VisibilityModifier"/>
 </module>

</module>

The Checkstyle plugin does not add the required library dependencies to our project
automatically. We need to add an appropriate repository to our project so that the
Checkstyle plugin can download all the dependencies.

Let's create the following example build file and add the repository definition:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

Now we can run the check task and see the output:

:compileJava

:processResources UP-TO-DATE

:classes

:checkstyleMain

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:0: File does not end with a newline.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:0: Missing package-info.java file.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:8:5: Missing a Javadoc comment.

Maintaining Code Quality

[216]

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:9: Line has trailing spaces.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:10:5: Missing a Javadoc comment.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:10:29: Parameter args should be final.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:14: Line has trailing spaces.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:15: Line has trailing spaces.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:17:5: Method 'setGreeting' is not designed for extension
- needs to be abstract, final or empty.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:17:5: Missing a Javadoc comment.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:17:42: 'greeting' hides a field.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:21:5: Method 'greet' is not designed for extension -
needs to be abstract, final or empty.

[ant:checkstyle] /samples/chapter9/sample/src/main/java/gradle/sample/
JavaSample.java:21:5: Missing a Javadoc comment.

FAILURE: Build failed with an exception.

* What went wrong:

Execution failed for task ':checkstyleMain'.

> Checkstyle rule violations were found. See the report at / samples/
chapter9/sample/build/reports/checkstyle/main.xml.

* Try:

Run with --stacktrace option to get the stack trace. Run with --info or
--debug option to get more log output.

BUILD FAILED

Total time: 4.889 secs

Chapter 9

[217]

The checkstyleMain task has been executed and the build has failed, because our
code doesn't follow our Checkstyle rules. In the output, we can see all the violations
of the rules. Gradle will also create an XML file with the violations in the build/
reports/checkstyle directory.

If we don't want the build to fail, we can use the property ignoreFailures of the
checkstyle tasks. The checks are still executed and the report file is generated,
but the build will not fail.

We can configure the Checkstyle plugin with the checkstyle{} script block or
the checkstyle property in a Gradle build. The script block accepts a configuration
closure where we can change the properties. In the following build file, we set the
ignoreFailures property to true, so the build will not fail even after Checkstyle
finds errors:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

checkstyle {
 ignoreFailures = true
}

While this book was being written, Gradle used Checkstyle 5.5. To change the
version, we can set the toolVersion property to another version. For example,
if, in the future, Checkstyle 5.6 is released, then we simply have to change the
toolVersion property and don't need a new Gradle version.

In the following example build file, we set the Checkstyle version to 5.4 by changing
the toolVersion property. We might need to do this for legacy projects too:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

checkstyle {
 toolVersion = 5.4
}

Maintaining Code Quality

[218]

To change the Checkstyle configuration file, we can set the property configFile
to a different value. The default value is config/checkstyle/checkstyle.xml.
We can, for example, copy the sun_checks.xml configuration file from a Checkstyle
distribution to the config/checkstyle directory. We set the configFile property
with the value of this new file, and our code is checked using the rules from the
sun_checks.xml configuration file.

This sample build file shows that we have referenced another Checkstyle
configuration file:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

checkstyle {
 configFile = file('config/checkstyle/sun_checks.xml')
}

A Checkstyle configuration supports property expansion. This means that the
configuration file has variable property values with the syntax ${propertyName}.
We can set the value for such a property by using the configProperties property
of the Checkstyle configuration closure. This property accepts a map, where the keys
are the property names from the Checkstyle configuration file and the values are the
property values. If the Checkstyle configuration file has a property with the name
tabWidth, for example, we can set the value with the following example build file:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

// Set checkstyle options, that are used by
// all checkstyle tasks.
checkstyle {
 configProperties = [tabWidth: 10]
}

Chapter 9

[219]

We use the checkstyle{} script block to change the properties for all the
checkstyle tasks in a project. But we can also configure individual checkstyle
tasks in our build file. We have got the checkstyleMain and checkstyleTest tasks,
and we can alter their configuration just like any other task.

Let's create the following example build file and change the properties of the
checkstyleTest task, which will override the properties set in the checkstyle{}
script block:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

// Set checkstyle options, that are used by
// all checkstyle tasks.
checkstyle {
 configFile = file('config/checkstyle/sun_checks.xml')
}

// Reconfigure the checkstyleTest task.
checkstyleTest {
 configFile = file('config/checkstyle/test.xml')
 ignoreFailures = true
}

If we have defined custom source sets in our build, then the Checkstyle plugin
automatically adds a checkstyle<SourceSet> task to the project. If our source set
is named api, then we can invoke the checkstyleApi task to only check this source
set. The checkstyleApi task is also added as a dependency task for the check task.
So once we run the check task, Gradle will invoke the checkstyleApi task as well.

In this example build file, we create a new source set with the name api:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

sourceSets {
 api
}

Maintaining Code Quality

[220]

If we invoke the tasks task, we can see in the output that a newly created task
checkstyleApi is added, which is a dependency task for the check task:

$ gradle tasks --all

...

Verification tasks

check - Runs all checks. [apiClasses, classes, test, testClasses]

 checkstyleApi - Run Checkstyle analysis for api classes

 checkstyleMain - Run Checkstyle analysis for main classes

 checkstyleTest - Run Checkstyle analysis for test classes

test - Runs the unit tests. [classes, testClasses]

...

The report XML files that are generated are placed in the build/reports/
checkstyle directory. The name of the files is based on the source set name. So
the checkstyleMain task will generate the report file build/reports/checkstyle/
main.xml. We can configure this in our build file. We can change the reports output
directory with the reportsDir property. We can change the destination file for a
specific checkstyle task with the destination property. We can also disable the
report generation with the enabled property, for a given task.

The following sample build file changes the reporting directory, the destination
file for the checkstyleMain task, and disables report generation for the
checkstyleTest task:

apply {
 plugin 'java'
 plugin 'checkstyle'
}

repositories.mavenCentral()

checkstyle {
 reportsDir = file("${buildDir}/checkstyle-output")
}

Chapter 9

[221]

checkstyleTest {
 reports.xml.enabled = false
}

checkstyleMain {
 reports {
 xml {
 destination = file("${checkstyle.reportsDir}/checkstyle.xml")
 }
 }
}

Using the PMD plugin
Another tool for analyzing the Java source code is PMD. It finds unused variables,
empty catch blocks, unnecessary object creation, and so forth. We can configure our
own rule sets and even define our own rules. To use PMD with Gradle, we have to
apply the PMD plugin to our build. After we have added the plugin, we have the
pmdMain and pmdTest tasks already installed. These tasks will run PMD rules for
the main and test source sets. If we have a custom source set, then the plugin adds
a pmd<SourceSet> task as well. These tasks are also dependency tasks of the check
task. So if we invoke the check task, all the pmd tasks are executed as well.

This plugin only defines a structure to work with PMD, but doesn't contain the
actual PMD library dependencies. Gradle will download the PMD dependencies
the first time that we invoke the pmd tasks. We have to define a repository that
contains the PMD libraries, such as the Maven Central repository or a corporate
intranet repository.

In the following build file, we apply the PMD plugin and define a custom source set:

apply plugin: 'java'
apply plugin: 'pmd'

repositories {
 mavenCentral()
}

sourceSets {
 util
}

Maintaining Code Quality

[222]

When we invoke the check task, and if there are no rule violations, we get the
following output:

$ gradle check

:pmdMain

:pmdTest UP-TO-DATE

:pmdUtil UP-TO-DATE

:compileJava UP-TO-DATE

:processResources UP-TO-DATE

:classes UP-TO-DATE

:compileTestJava UP-TO-DATE

:processTestResources UP-TO-DATE

:testClasses UP-TO-DATE

:test

:check

BUILD SUCCESSFUL

Total time: 6.497 secs

Note the pmdMain, pmdTest, and pmdUtil tasks that are executed.

If one of the files has a violation, then the build will fail by default. We can set
the ignoreFailures property for the pmd tasks to true, so the build will not fail.
The following sample build shows how we can set the property ignoreFailures
to true:

apply plugin: 'java'
apply plugin: 'pmd'

repositories {
 mavenCentral()
}

sourceSets {
 util
}

pmd {
 // Don't fail the build process when
 // rule violations are found.
 ignoreFailures = true
}

Chapter 9

[223]

Rule violations will be reported in an XML and HTML file in the build/reports/
pmd directory. The name of the file is the same as the source set name. We can change
the name of the reporting directory and the output filename, or we can also disable
the report generation.

The following example build file changes several properties of the reporting by
the pmd tasks:

apply plugin: 'java'
apply plugin: 'pmd'

repositories {
 mavenCentral()
}

sourceSets {
 util
}

pmd {
 // Change base reporting dir for PDM reports.
 reportsDir = file("${reporting.baseDir}/pmd-output")
}

configure(tasks.withType(Pmd)) {
 // Disable HTML report generation for all PDM tasks.
 reports.html.enabled = false
}

// Change output file for the single task pmdMain.
pmdMain {
 reports {
 xml.destination = file("${pmd.reportsDir}/pmd.xml")
 }
}

Only the basic rule set of PMD is applied if we don't define anything else in the
build file. To change which rules are applied, we can use the rules property and
the rules() method. With the rules() method, we have a convenient way to add
new rules. With the rules property, we have to define all the rules we want to use
as a property assignment.

Besides configuring the rules, we can also assign rule set files for the pmd tasks. A
rule set file contains several rules and allows customization of the rules. To add a
rule set file, we can use the ruleSetFiles property or the ruleSetFiles() method.
We need to reference a file to set the property or pass it as a method argument.

Maintaining Code Quality

[224]

The following sample build file shows how we can set rules and rule set files:

apply plugin: 'java'
apply plugin: 'pmd'

repositories {
 mavenCentral()
}

pmd {
 // Add rules.
 ruleSets 'design', 'braces'
 // Or use property syntax.
 // ruleSets = ['design', 'braces']

 // Set rule set file.
 ruleSetFiles = [file('config/pmd/customRules.xml')]
 // Or use method.
 //ruleSetFiles file('config/pmd/customRules.xml')
}

To change the version of PMD that we want to use, we must set the property
toolVersion of the PDM plugin. When this book was being written, this was
set to version 4.3, but we can change it to other versions if required. In the
following example build file, we simply change the version to 4.2 with the
toolVersion property:

apply plugin: 'java'
apply plugin: 'pmd'

pmd.toolVersion = 4.2

Using the FindBugs plugin
FindBugs is another library that we can use to analyze our source code. To use
FindBugs in our Gradle builds, we simply have to apply the FindBugs plugin.
We can either apply one source code analysis plugin to our project, or we can
apply multiple plugins. Each tool has different features. It just depends on what
we want to check or what is prescribed per company policy. The plugin will add
the tasks findbugsMain and findbugsTest to analyze the source code from
the main and test source sets. If we have a custom source set, then the task
findbugs<SourceSet> is also added to the plugin. These tasks are all
dependency tasks for the check task.

Chapter 9

[225]

Just as with the other code quality plugins, the FindBugs dependencies are not
included with Gradle, but will be downloaded the first time we use the findbugs
tasks. We must include a repository definition that will enable Gradle to find the
FindBugs dependencies. To change the FindBugs version that is being used, we
can set the toolVersion property with the findbugs() method.

In the following build file, we apply the FindBugs plugin and configure an extra
source set with the name webservice:

apply plugin: 'java'
apply plugin: 'findbugs'

repositories {
 mavenCentral()
}

findbugs {
 toolVersion = '2.0.0' // Default version with Gradle 1.1
}

sourceSets {
 webservice
}

When we execute the tasks task, we see that the findbugsMain, findbugsTest,
and findbugsWebservice tasks are dependencies for the check task:

$ gradle tasks --all

...

Verification tasks

check - Runs all checks. [classes, test, testClasses, webserviceClasses]

 findbugsMain - Run FindBugs analysis for main classes

 findbugsTest - Run FindBugs analysis for test classes

 findbugsWebservice - Run FindBugs analysis for webservice classes

test - Runs the unit tests. [classes, testClasses]

...

Maintaining Code Quality

[226]

If FindBugs finds violations of the rules in our source, then the build will fail. We can
set the property ignoreFailures to true, as shown in the following lines of code, to
make sure the build will continue even if violations are found:

apply plugin: 'java'
apply plugin: 'findbugs'

repositories.mavenCentral()

// Global setting for all findbugs tasks.
findbugs.ignoreFailures = true

// We can change ignoreFailures property also per task.
findbugsMain.ignoreFailures = false

The plugin generates an XML report with the result of the FindBugs analysis in the
directory build/reports/findbugs. The name of the XML file is the same as the
name of the source set that is analyzed. We can also configure the plugin that an
HTML report generates. In the following build file, we configure the reporting in
the FindBugs plugin:

apply plugin: 'java'
apply plugin: 'findbugs'

repositories {
 mavenCentral()
}

findbugs {
 // Change base directory for FindBugs reports.
 reportsDir = file("${reporting.baseDir}/findbugs-output")
}

findbugsMain {
 reports {
 html {
 enabled = true

 // Change output file name.
 destination = "${findbugs.reportsDir}/findbugs.html"
 }
 // Only one report (xml or html) can be active.
 xml.enabled = !html.enabled
 }
}

Chapter 9

[227]

If we want to use FindBugs plugins, we can define them as dependencies. The
FindBugs plugin adds a findbugsPlugins dependency configuration. We can
assign plugin dependencies to this configuration, and the findbugs tasks will
use these plugins to analyze the code.

Using the JDepend plugin
To get quality metrics for our code base, we can use JDepend. JDepend traverses
the generated class files in our project and generates design quality metrics. To
use JDepend, we simply have to apply the JDepend plugin in our project. This will
add a jdependMain and jdependTest task. For each extra source set in our project,
a jdepend<SourceSet> task is added. These tasks are all dependency tasks of the
check task.

We must configure a repository so Gradle can fetch the JDepend dependencies.
Gradle doesn't provide the JDepend libraries in the Gradle distribution. This
means that we can easily use another version of JDepend, independent of the Gradle
version we are using. We see this behavior in the other code quality plugins as well.
To change a version number, we simply have to set the toolVersion property of the
JDepend plugin.

In the following example build file, we apply the JDepend plugin and create an
extra source set:

apply plugin: 'java'
apply plugin: 'jdepend'

// Repository definition to get JDepend libraries.
repositories {
 mavenCentral()
}

// We can change the version of JDepend to be used.
jdepend.toolVersion = '2.9.1'

// Custom source set so jdependRestApi task is created.
sourceSets {
 restApi
}

Maintaining Code Quality

[228]

When we invoke the tasks task, we will see that three jdepend tasks are created
as a dependency for the check task:

$ gradle tasks --all

...

Verification tasks

check - Runs all checks. [classes, restApiClasses, test, testClasses]

 jdependMain - Run JDepend analysis for main classes

 jdependRestApi - Run JDepend analysis for restApi classes

 jdependTest - Run JDepend analysis for test classes

test - Runs the unit tests. [classes, testClasses]

...

The jdepend tasks create statistics about our code. The results are stored in an XML
file in the build/reports/jdepend directory. We can configure the JDepend plugin
so the directory that we store the reports in is different. For each jdepend task, we
can also alter the output format. Instead of XML, we can generate a text file with
the statistics about our code. We have to choose between XML and text; we cannot
choose both report outputs for a single jdepend task.

The following sample build file shows several options on how we can change the
reports with information about our source code:

apply plugin: 'java'
apply plugin: 'jdepend'

// Repository definition to get JDepend libraries.
repositories {
 mavenCentral()
}

jdepend.reportsDir = file("${reporting.baseDir}/jdepend-output")

jdependMain {
 reports {
 text {
 enabled = 'true'
 destination = file("${jdepend.reportsDir}/jdepend.txt")
 }

Chapter 9

[229]

 xml {
 enabled = !text.enabled
 }
 }
}

Using the CodeNarc plugin
To check code written in the Groovy language, we can use CodeNarc. CodeNarc
has several rules to do a static analysis of Groovy code. Gradle has a CodeNarc
plugin, so we can apply the rules from CodeNarc to our Groovy code base. If we
apply the plugin, we automatically get a codenarcMain and codenarcTest target.
Also, for each custom source set, we get a new task named codenarc<SourceSet>.
All these tasks are dependency tasks of the check task.

The CodeNarc library is not included with Gradle. We need to define a repository
in our build file that contains CodeNarc. If we invoke a codenarc task, then Gradle
sets CodeNarc dependencies. We can change the version of CodeNarc that we want
to use by setting the codenarc.toolVersion property.

The plugin defines that we provide a CodeNarc configuration file with the name
codenarc.xml in the directory config/codenarc. We can change the reference
to the configuration file with the configFile property of the plugin.

Let's create the following example build file and apply the CodeNarc plugin for
a Groovy project. We will change the version of CodeNarc that we want to use.
We will also redefine the location of the CodeNarc configuration file to config/
codenarc/custom.xml:

apply plugin: 'groovy'
apply plugin: 'codenarc'

// Repository definition to get CodeNarc libraries.
repositories {
 mavenCentral()
}

codenarc {
 // Change version of CodeNarc.
 toolVersion = 0.17

 // Change name of configuration file. Default value
 // is file('config/codenarc/codenarc.xml')
 configFile = file('config/codenarc/rules.groovy')
}

Maintaining Code Quality

[230]

When we run the check task and our Groovy code base starts violating the
configured CodeNarc rules, the build will fail. If we don't want the build to fail
on a violation, we can set the property ignoreFailures to true. We can set this
for all codenarc tasks with the codenarc.ignoreFailures property. We can also
set this property for individual codenarc tasks.

The following build file shows that we set the property ignoreFailures for all
the codenarc tasks:

apply plugin: 'groovy'
apply plugin: 'codenarc'

repositories {
 mavenCentral()
}

codenarc.ignoreFailures = true

The codenarc tasks create an HTML report with the found results, and place it in
the build/reports/codenarc directory. The name of the file is defined by the
source set name for which the task is executed. We can also choose different output
formats. We can set the output to XML or text file formats. We can change the format
of the reports with the reports() method of the codenarc tasks. To change the
output directory, we can set the property codenarc.reportsDir in our project:

apply plugin: 'groovy'
apply plugin: 'codenarc'

// Repository definition to get CodeNarc libraries.
repositories {
 mavenCentral()
}

codenarc {
 toolVersion = 0.17
 configFile = file('config/codenarc/rules.groovy')

 // Change output directory for reports.
 reportsDir = file("${reporting.baseDir}/codenarc-output")
}

tasks.withType(CodeNarc) { task ->

Chapter 9

[231]

 reports {
 // Enable text format.
 text.enabled = true

 // Configure XML output.
 xml {
 enabled = true

 // Change destination file.
 destination = file("${codenarc.reportsDir}/${task.name}.xml")
 }
 }
}

Using the Sonar plugin
Sonar is a complete platform to monitor code quality in a project. Sonar has a
web-based dashboard where code quality can be monitored in due time, so we
can see if our code has improved over time by using Sonar. Gradle has a Sonar
plugin to work with Sonar. This plugin requires Sonar 2.9 or higher. When we
apply the plugin, a new task—sonarAnalyze- is added to our project. This task
is not a dependency task for the check task, but is a standalone task. The task can
analyze not only class files, but also test results, so we can make sure that the build
task is executed before the sonarAnalyze task, to add a dependency on the build
task to the sonarAnalyze task.

In the following example build file, we will apply the Sonar plugin, and if Sonar is
running locally, we can simply execute the sonarAnalyze task:

apply plugin: 'java'
apply plugin: 'sonar'

sonarAnalyze.dependsOn 'build'

If we run Sonar locally, we don't have to configure anything. Gradle will use the
default settings to access the locally running Sonar server. Usually, a Sonar server
runs on a remote machine. We can configure the Sonar plugin to use a different
address and database settings with the sonar{} script block. The script block
accepts a configuration closure with several sections for the server and its
database properties.

Maintaining Code Quality

[232]

The following build file has different settings for the Sonar server URL and
database properties:

apply plugin: 'java'
apply plugin: 'sonar'

sonarAnalyze.dependsOn 'build'

sonar {
 server.url = 'http://sonar.company'
 database {
 url = 'jdbc:mysql://database.server/sonar'
 driverClassName = 'com.mysql.jdbc.Driver'
 username = 'sonar'
 password = 'sonar'
 }
}

We can further customize the Sonar settings with a project() method and
configuration closure. For example, we can change the directory where the Sonar
client library files are stored after being downloaded from the Sonar server. We can
define the location of the Clover or Cobertura coverage XML result file and much
more. The plugin already uses a lot of default values from project properties. For
example, the version and group properties of a project are used to identify the
project in Sonar. The following table shows all the properties we can set via the
project() method configuration closure:

Property Type Default value Description
baseDir File project.

projectDir
Base directory to do
analysis on.

binaryDirs List<File> sourceSets.
main.output.
classesDir

Directory with the
compiled source code
to analyzed.

cloverReport
Path

File null Path to Clover XML
report file.

cobertura
ReportPath

File null Path to Cobertura
XML report file.

date String current date Date of analysis
with the format
"yyyy-mm-dd".

description String project.
description

Description of the
 project used in Sonar.

Chapter 9

[233]

Property Type Default value Description
dynamic
Analysis

String reuseReports Dynamic analysis
includes the analysis
of test and coverage
results. We can set the
value to
reuseReports,
so reports from
testReports,
clover
ReportPath, and
coberturaReport
Path are used for
analysis. The value
can be set to false so
no dynamic analysis
is performed, or true
(which is not
supported by Gradle)
so that Sonar will
produce the test and
coverage reports.

importSource boolean true Makes the source code
available in the Sonar
web interface.

java SonarJava
Settings

Specific settings for
Java source code, such
as source
compatibility.

key String project.
group:project.
name

Identifier of the
project in Sonar.

language String java Language that needs
to be analyzed by
Sonar. Only one
language per
project can be
analyzed.

libraries File
Collection

sourceSets.main.
compileClasspath
+ Jvm.current().
runtimeJar

Classpath with
libraries that are
used by the project.

name String project.name Name of the project.

Maintaining Code Quality

[234]

Property Type Default value Description
property
Processors

List
<Closure>

empty List of post-processors
of Sonar properties.
See also the methods
withGlobal
Properites()
and withProject
Properties().

skip boolean false Skip this project for
analysis.

skipDesign
Analysis

boolean false Skip design analysis
by Sonar.

sourceDirs List<File> sourceSets.
main.allSource.
srcDirs

Directories with
source files to be
analyzed by Sonar.

source
Encoding

String JVM's platform
encoding

Character encoding
of the project source
files.

source
Exclusions

String null Pattern of source
files to be excluded
from analysis. The
pattern can be an
ANT matching
pattern. For example,
**/*Fixture.java.

testDirs List<File> sourceSets.
test.allSource.
srcDirs

Directories with
test source code to
be analyzed.

testReport
Path

File test.
testResultsDir

Directory with the
JUnit XML report.

version String project.
version

Version of the project.

workDir File project.
builDir/sonar

Working directory for
analysis.

The following example build file shows several properties that we need to change:

apply plugin: 'java'
apply plugin: 'sonar'

version = '2.0-SNAPSHOT'

Chapter 9

[235]

group = 'gradle.sample'

sonarAnalyze.dependsOn 'build'

sonar {
 project {
 // Change directory to store Sonar client library files.
 bootstrapDir = file("${buildDir}/sonarClient")

 // Set Sonar profile to be used.
 profile = 'quality'

 // Set path to Cobertura results.
 coberturaReportPath = file("${reporting.baseDir}/cobertura/
cobertura.xml")
 }
}

We can add custom properties with the method withGlobalProperties()
for properties that are global for Sonar, or the method withProjectProperties()
to define a property specific for a project. Both methods accept a closure as the
parameter. A map of the properties is the argument of the closure. In the following
build file, we will see how we can use this mechanism to further customize the
Sonar plugin:

apply plugin: 'java'
apply plugin: 'sonar'

version = '2.0-SNAPSHOT'
group = 'gradle.sample'

sonarAnalyze.dependsOn 'build'

sonar {
 withGlobalProperties { properties ->
 properties['sonar.verbose'] = true
 }
 project {
 withProjectProperties { projectProperties ->
 projectProperties['sonar.showSql'] = true
 }
 }
}

Maintaining Code Quality

[236]

Summary
We learned in this chapter that it is easy to use code analysis tools in a Gradle
project. We can use Checkstyle, PMD, JDepend, and FindBugs for Java projects.
For Groovy projects, we can use CodeNarc. All the plugins of these tools add new
tasks to our project, for each source set to do the analysis. Each of these tasks is a
dependency task for the check task. So when we apply the plugin in a normal build,
the code analysis will take place. Also, we learned that the usage and syntax are
mostly identical for each plugin.

With the Sonar plugin, we can send the analysis data of our project to a Sonar server.
This task is a standalone task that is not part of a normal build process.

In the next chapter, we will take a look at how we can write our own custom task
and plugin. We'll learn how we can make it reusable in other Gradle builds.

Writing Custom Tasks
and Plugins

In Gradle, we can either write a simple task in a build file where we add actions
with a closure, or we can configure an existing task that is included with Gradle.
The process of writing our own task is easy. There are different ways in which
we can create a custom task, which we will cover in this chapter.

We will see how we can create a new task class in our build file and use it in our
project. Next, we will learn how to create custom tasks in a separate source file.
We also learn in this chapter how we can make our task reusable in other projects.

We will learn how to write a plugin for Gradle. Similar to writing custom tasks,
we will cover the different ways to write a plugin. We will also see how we can
publish our plugin and learn how we can use it in a new project.

We can write our tasks and plugins in Groovy, which works very well with the
Gradle API, but we can also use other languages, such as Java and Scala. As long
as the code is compiled into bytecode, we are fine.

Creating a custom task
When we create a new task in a build and specify a task with the type property, we
actually configure an existing task. The existing task is called an enhanced task in
Gradle. For example, the Copy task type is an enhanced task. We configure the task in
our build file, but the implementation of the Copy task is in a separate class file. It is
a good practice to separate the task usage from the task implementation. It improves
the maintainability and reusability of the task. In this section, we are creating our
own enhanced tasks.

Writing Custom Tasks and Plugins

[238]

Creating a custom task in the build file
First, let's see how we can create a task to display the current Gradle version in our
build by simply adding a new task with a simple action. We have seen these types
of tasks earlier in other sample build files. In the following sample build, we create
a new info task:

task info(description: 'Show Gradle version') << {
 println "Current Gradle version: $project.gradle.gradleVersion"
}

When we invoke the info task from the command line, we see the following output:

gradle info

:info

Current Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 2.061 secs

Now, we are going to create a new task definition in our build file and make it an
enhanced task. We create a new class in our build file and this class extends org.
gradle.api.DefaultTask. We write an implementation for the class by adding
a new method. To indicate that the method is the action of the class, we use the
annotation @TaskAction.

After we have defined our task class, we can use it in our build file. We add a task to
the project tasks container and use the type property to reference our new task class.

In the following sample build file, we have a new task class InfoTask and the task
info that uses this new task class:

// Use the InfoTask we defined
task info(type: InfoTask)

defaultTasks 'info'

/**
 * Show current Gradle version.
 */
class InfoTask extends DefaultTask {

 @TaskAction

Chapter 10

[239]

 def info() {
 println "Current Gradle version:$project.gradle.gradleVersion"
 }
}

When we run our build file, the info task is invoked automatically because it is
a part of the default tasks for the project. In the following output, we can see our
current Gradle version:

$ gradle

:info

Current Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 2.116 secs

To customize our simple task, we can add properties to our task. We can assign
values to these properties when we configure the task in our build file.

For our sample task, we first add a prefix property. This property is used when we
print the Gradle version instead of the text 'Current Gradle version:'. We give it
a default value, so when we use the task and don't set the property value, we still get
a meaningful prefix. We can mark our property as optional, because of the default
value, with the annotation @Optional. This way, we have documented that our
property doesn't need to be configured when we use the task:

task info(type: InfoTask)

defaultTasks 'info'

class InfoTask extends DefaultTask {
 @Optional
 String prefix = 'Current Gradle version'

 @TaskAction
 def info() {
 println "$prefix: $project.gradle.gradleVersion"
 }
}

Writing Custom Tasks and Plugins

[240]

If we want another prefix in our output, we can configure the info task in our build
file. We assign the 'Running Gradle' value to the prefix property of our InfoTask:

task info(type: InfoTask) {
 prefix = 'Running Gradle'
}

defaultTasks 'info'

class InfoTask extends DefaultTask {

 String prefix = 'Current Gradle version'

 @TaskAction
 def info() {
 println "$prefix: $project.gradle.gradleVersion"
 }
}

Now, if we run our build file, we can see our new prefix value in the output:

$ gradle

:info

Running Gradle: 1.1

BUILD SUCCESSFUL

Total time: 2.139 secs

Using incremental build support
We know Gradle supports incremental builds. This means that Gradle can check if
a task has any dependencies for input or output on files, directories, and properties.
If none of these have changed since the last build, the task is not executed. We will
learn how we can use annotations with our task properties to make sure our task
supports Gradle's incremental build feature.

We have seen how we can use the inputs and outputs properties of tasks we have
created so far. To indicate which properties of our new enhanced tasks are input
and output properties, the ones used by Gradle's incremental support, we must
add certain annotations to our class definition. We can assign the annotation to
the field property or the getter method for the property.

Chapter 10

[241]

In a previous chapter, we have created a task that reads a XML source file and
converts the contents to a text file. Let's create a new enhanced task for this
functionality. We use the @InputFile annotation for the property that holds
the value for the source XML file. The @OutputFile annotation is assigned to
the property that holds the output file:

task convert(type: ConvertTask) {
 source = file('source.xml')
 output = file("$buildDir/convert-output.txt")
}

/**
 * Convert XML source file to text file.
 */
class ConvertTask extends DefaultTask {

 @InputFile
 File source

 @OutputFile
 File output

 @TaskAction
 void convert() {
 def xml = new XmlSlurper().parse(source)
 output.withPrintWriter { writer ->
 xml.person.each { person ->
 writer.println "${person.name},${person.email}"
 }
 }
 println "Converted ${source.name} to ${output.name}"
 }
}

Let's create an XML file with the name source.xml in the current directory, with
the following code:

<?xml version="1.0"?>
<people>
 <person>
 <name>mrhaki</name>
 <email>hubert@mrhaki.com</email>
 </person>
</people>

Writing Custom Tasks and Plugins

[242]

Now, we can invoke the convert task in our build file. We can see in the output
that the file is converted:

$ gradle convert

:convert

Converted source.xml to convert-output.txt

BUILD SUCCESSFUL

Total time: 3.8 secs

If we look at the contents of the convert-output.txt file, we see the following
values from the source file:

$ cat build/convert-output.txt

mrhaki,hubert@mrhaki.com

When we invoke the convert task for the second time, we can see Gradle's
incremental build support has noticed that the input and output file haven't
changed, so our task is up-to-date:

$ gradle convert

:convert UP-TO-DATE

BUILD SUCCESSFUL

Total time: 1.664 secs

The following table shows the annotations we can use to indicate the input
and output properties of our enhanced task:

Annotation Name Description
@Input Indicates property specifies an input value. When the value

of this property changes, the task is not longer up-to-date.
@InputFile Indicates property is an input file. Use this for properties that

reference a single file of type File.
@InputFiles Mark property as input files for a property that holds a

collection of File objects.
@InputDirectory Indicates property is an input directory. Use this for a File

type property that references a directory structure.
@OutputFile Indicates property as output file. Use this for properties that

reference a single file of type File.

Chapter 10

[243]

Annotation Name Description
@OutputFiles Mark property as output files for a property that holds a

collection of File objects.
@OuputDirectory Indicates property is an output directory. Use this for a

File type property that references a directory structure.
If the output directory doesn't exist, it will be created.

@OutputDirectories Mark property is an output directory Use this for a property
that references a collection of File objects, which are
references to directory structures.

@Optional If applied to any of the above annotations, we mark it as
optional. The value doesn't have to be applied for this property.

@Nested We can apply this annotation to a Java Bean property. The
bean object is checked for any of the above annotations. This
way, we can use arbitrary objects
as input or output properties.

Creating a task in the project source
directory
In the previous section we have defined and used our own enhanced task in the
same build file. Next, we are going to extract the class definition from the build
file and put it in a separate file. We are going to place the file in the buildSrc
project source directory.

Let's move our InfoTask to the buildSrc directory of our project. We first create
the buildSrc/src/main/groovy/sample directory. We create a file named
InfoTask.groovy in this directory, with the following code:

package sample

import org.gradle.api.*
import org.gradle.api.tasks.*

class InfoTask extends DefaultTask {

 String prefix = 'Current Gradle version'

 @TaskAction
 def info() {
 println "$prefix: $project.gradle.gradleVersion"
 }
}

Writing Custom Tasks and Plugins

[244]

Notice that we must add import statements for the classes of the Gradle API. These
imports are implicitly added to a build script by Gradle, but if we define the task
outside the build script, we must add the import statements ourselves.

In our project build file, we only have to create a new info task of type InfoTask.
Notice that we must use the package name to identify our InfoTask class or add
an import sample.InfoTask statement:

task info(type: sample.InfoTask) {
 prefix = 'Running Gradle'
}

defaultTasks 'info'

If we run the build, we can see that Gradle first compiles the InfoTask.groovy
source file:

$ gradle

:buildSrc:compileJava UP-TO-DATE

:buildSrc:compileGroovy

:buildSrc:processResources UP-TO-DATE

:buildSrc:classes

:buildSrc:jar

:buildSrc:assemble

:buildSrc:compileTestJava UP-TO-DATE

:buildSrc:compileTestGroovy UP-TO-DATE

:buildSrc:processTestResources UP-TO-DATE

:buildSrc:testClasses UP-TO-DATE

:buildSrc:test

:buildSrc:check

:buildSrc:build

:info

Running Gradle: 1.1

BUILD SUCCESSFUL

Total time: 4.2 secs

Chapter 10

[245]

As a matter of fact, the build task of the buildSrc directory is executed. We can
customize the build of the buildSrc directory by adding a build.gradle file. In this
file, we can configure the tasks, add new tasks, and do practically anything we can in
a normal project build file. The buildSrc directory can even be a multi-project build.

Let's add a new build.gradle file in the buildSrc directory. We add a simple
action to the build task, which prints the value 'Done building buildSrc':

// File: buildSrc/build.gradle
build.doLast {
 println 'Done building buildSrc'
}

If we run our project build, we can see the following output:

$ gradle

:buildSrc:compileJava UP-TO-DATE

:buildSrc:compileGroovy UP-TO-DATE

:buildSrc:processResources UP-TO-DATE

:buildSrc:classes UP-TO-DATE

:buildSrc:jar UP-TO-DATE

:buildSrc:assemble UP-TO-DATE

:buildSrc:compileTestJava UP-TO-DATE

:buildSrc:compileTestGroovy UP-TO-DATE

:buildSrc:processTestResources UP-TO-DATE

:buildSrc:testClasses UP-TO-DATE

:buildSrc:test UP-TO-DATE

:buildSrc:check UP-TO-DATE

:buildSrc:build

Done building buildSrc

:info

Running Gradle: 1.1

BUILD SUCCESSFUL

Total time: 3.198 secs

Writing Custom Tasks and Plugins

[246]

Writing tests
As the buildSrc directory is similar to any other Java/Groovy project, we can also
create tests for our task. We have the same directory structure as that of a Java/
Groovy project, and we can also define extra dependencies in the build.gradle file.

If we want to access a Project object in our test class, we can use the org.gradle.
testfixtures.ProjectBuilder class. With this class, we can configure a Project
object and use it in our test case. We can optionally configure the name, parent, and
project directory before using the build() method to create a new Project object.
We can use the Project object, for example, to add a new task with the type of our
new enhanced task and see if there are any errors. ProjectBuilder is meant for
low-level testing. The actual tasks are not executed.

In the following JUnit test, we test if the property value can be set. We have a second
test to check if the task of type InfoTask is added to the task container of a project:

package sample

import org.junit.*
import org.gradle.api.*
import org.gradle.testfixtures.ProjectBuilder

class InfoTaskTest {

 @Test
 void createTaskInProject() {
 final Task newTask = createInfoTask()
 assert newTask instanceof InfoTask
 }

 @Test
 void propertyValueIsSet() {
 final Task newTask = createInfoTask()
 newTask.configure {
 prefix = 'Test'
 }
 assert newTask.prefix == 'Test'
 }

 private Task createInfoTask() {
 // We cannot use new InfoTask() to create a new instance,
 // but we must use the Project.task() method.
 final Project project = ProjectBuilder.builder().build()
 project.task('info', type: InfoTask)
 }

}

Chapter 10

[247]

In our build.gradle file in the buildSrc directory, we must add a Maven
repository and the dependency on the JUnit libraries by using the following
lines of code:

repositories.mavenCentral()

dependencies {
 testCompile 'junit:junit:4.10'
}

Our test is automatically executed because the test task is part of the build process
for the buildSrc directory.

Creating a task in a standalone project
To make a task reusable for other projects, we must have a way to distribute the task.
Also, other projects that want to use the task must be able to find our task. We will
see how we can publish our task in a repository and how other projects can use the
task in their projects.

We have seen how we can place the task implementation from the build file into
the buildSrc directory. The buildSrc directory is similar to a normal Gradle build
project, so it is easy to create a standalone project for our task. We only have to copy
the contents of the buildSrc directory to our newly created project directory.

Let's create a new project directory and copy the contents of the buildSrc directory.
We must edit the build.gradle file of our standalone project. Gradle implicitly
added the Groovy plugin and dependencies on the Gradle API and Groovy for us
when the build.gradle file is in the buildSrc directory. Now we have a standalone
project, and we must add those dependencies ourselves.

The following build.gradle file has all the definitions necessary to build and
deploy our artifact to a local distribution directory. We could also define a corporate
intranet repository so that other projects can re-use our InfoTask in their projects.

apply plugin: 'groovy'
apply plugin: 'maven'

version = '1.0'
group = 'sample.infotask'
archivesBaseName = 'infotask'

repositories.mavenCentral()

Writing Custom Tasks and Plugins

[248]

dependencies {
 compile gradleApi()
 groovy localGroovy()
 testCompile 'junit:junit:4.10'
}

uploadArchives {
 repositories.mavenDeployer {
 repository(url: 'file:../lib')
 }
}

When we invoke the uploadArchives task to publish our packaged InfoTask in
the ../lib directory, we see the following output:

$ gradle uploadArchives

...

:uploadArchives

Uploading: sample/infotask/infotask/1.0/infotask-1.0.jar to repository
remote at file:../lib

Transferring 5K from remote

Uploaded 5K

BUILD SUCCESSFUL

Total time: 3.431 secs

We have published our task, and other projects can use it in their builds. Remember
that anything in the buildSrc directory of a project is added automatically to the
classpath of the build. But if we have a published artifact with the task, this will
not happen automatically. We must configure our build and add the artifact as a
dependency of the build script.

We use the buildscript{} script block in our build to configure the classpath of
our Gradle project. To include our published InfoTask in a new project, we must
add the artifact as a classpath configuration dependency for our build.

We create a new directory and add the following build.gradle file to the directory:

buildscript {
 repositories {
 maven {

Chapter 10

[249]

 url 'file:../lib'
 }
 }
 dependencies {
 classpath group: 'sample.infotask', name: 'infotask', version:
'1.0'
 }
}

task info(type: sample.InfoTask)

defaultTasks 'info'

Next, we can run the build and see in the output that the InfoTask is executed:

$ gradle

:info

Current Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 3.452 secs

Creating a custom plugin
One of the great features of Gradle is the support for plugins. A plugin can contain
tasks, configurations, properties, methods, concepts, and more to add extra
functionality to our projects. For example, if we apply the Java plugin to our project,
we can immediately invoke the compile, test, and build tasks. Also, we have new
dependency configurations we can use and extra properties we can configure. The
Java plugin itself applies the java-base plugin. The java-base plugin doesn't introduce
tasks, but the concept of source sets. This is a good pattern for creating our own
plugins, where a base plugin introduces new concepts and another plugin derives
from the base plugin and adds explicit build logic-like tasks.

So a plugin is a good way to distribute build logic that we want to share between
projects. We can write our own plugin, give it an explicit version, and publish it to,
for example, a repository. Other projects can then re-use the functionality by simply
applying the plugin to a project. We can create our own plugins and use them in our
projects. We start by defining the plugin in the build file.

Writing Custom Tasks and Plugins

[250]

Creating a plugin in the build file
We can create a custom plugin right in the project build file. Similar to a custom task,
we can add a new class definition with the logic of the plugin. We must implement the
org.gradle.api.Plugin<T> interface. The interface has one method named apply().
When we write our own plugin, we must override this method. The method accepts
an object as a parameter. The type of the object is the same as the generic type T. When
we create a plugin for projects, the type Project is used. We can also write plugins for
other Gradle types, like tasks. Then we must use the Task type.

We are going to create a simple plugin that will print out the Gradle version. The
plugin adds a new info task to the project. The following sample build file defines a
new plugin with the name InfoPlugin. We override the apply() method and add a
new task to the project, with the name info. This task prints out the Gradle version.
At the top of the build file, we use the apply() method and reference the plugin by
the name InfoPlugin, which is the class name of the plugin:

apply plugin: InfoPlugin

class InfoPlugin implements Plugin<Project> {

 void apply(Project project) {
 project.task('info') << {
 println "Running Gradle: $project.gradle.gradleVersion"
 }
 }
}

From the command line, we can invoke the info task when we run Gradle. We can
see the Gradle version in the following output:

$ gradle info

:info

Running Gradle: 1.1

BUILD SUCCESSFUL

Total time: 2.503 secs

Chapter 10

[251]

The info task always prints the same text before the Gradle version. We can
rewrite the task and make the text configurable. A Gradle Project has an associated
ExtensionContainer object. This object can hold all settings and properties we
want to pass to a plugin. We can add a Java Bean to ExtensionContainer so that
we can configure the bean's properties from the build file. The Java Bean is a
so-called extension object.

In our sample build file, we first add a new class InfoPluginExtension with
a property prefix of type String. This is the Java Bean-compliant class we add
to ExtensionContainer. In the apply() method, we use the create() method
of ExtensionContainer to add InfoPluginExtension with the name info to
the project. In the build file, we configure the prefix property using the info
configuration closure. Or we can simply reference the prefix property through
the info extension object:

apply plugin: InfoPlugin

// Configure the InfoPlugin through the
// InfoPluginExtension.
info {
 prefix = 'Gradle version'
}
// Or info.prefix = 'Gradle version'

class InfoPlugin implements Plugin<Project> {
 void apply(Project project) {
 // Add the Java Bean InfoPluginExtension with the
 // name info to the project ExtensionContainer.
 project.extensions.create('info', InfoPluginExtension)

 project.task('info') << {
 // Use project.info.prefix from the extension.
 println "$project.info.prefix: $project.gradle.
gradleVersion"
 }
 }

}

class InfoPluginExtension {
 String prefix = 'Running Gradle'
}

Writing Custom Tasks and Plugins

[252]

If we run the info task, we see our configured prefix in the output:

$ gradle info

:info

Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 7.345 secs

Creating a plugin in the project
source directory
We have defined the plugin and used the plugin in the same build file. We will see
how we can extract the plugin code from the build file and put it in a separate source
file in the project source directory. Also, we will learn how we can test the plugin.

When we define the plugin in our build file, we cannot re-use it in other projects.
And we now have the definition and usage of the plugin in the same file. To separate
the definition and usage, we can create the plugin class in the buildSrc directory of
a Gradle project. In a Gradle multi-project, we must use the buildSrc directory of
the root project. This means, for a multi-project build, we can re-use the plugin in the
other projects of the multi-project build.

We already learned when we wrote a custom task that any sources in the buildSrc
directory are automatically compiled and added to the classpath of the project. First,
we create the directory buildSrc/src/main/groovy/sample. In this directory, we
create a file called InfoPlugin.groovy with the following code:

package sample

import org.gradle.api.*

class InfoPlugin implements Plugin<Project> {

 void apply(Project project) {
 project.extensions.create('info', InfoPluginExtension)

 project.task('info') << {
 println "$project.info.prefix: $project.gradle.
gradleVersion"
 }
 }
}

Chapter 10

[253]

Next, we create the file InfoPluginExtension.groovy in the directory:

package sample

class InfoPluginExtension {
 String prefix
}

In our build file in the root of the project, we reference our plugin with the package
and class name:

apply plugin: sample.InfoPlugin

info {
 prefix = 'Gradle version'
}

When we run the info task, we see in the output that first the plugin code is
compiled, and then the info task is executed:

$ gradle

:buildSrc:compileJava UP-TO-DATE

:buildSrc:compileGroovy

:buildSrc:processResources UP-TO-DATE

:buildSrc:classes

:buildSrc:jar

:buildSrc:assemble

:buildSrc:compileTestJava UP-TO-DATE

:buildSrc:compileTestGroovy UP-TO-DATE

:buildSrc:processTestResources UP-TO-DATE

:buildSrc:testClasses UP-TO-DATE

:buildSrc:test

:buildSrc:check

:buildSrc:build

:info

Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 2.743 secs

Writing Custom Tasks and Plugins

[254]

Testing a plugin
One of the tasks that are executed for the project in the buildSrc directory is the
test task. We can write test cases for testing the plugin code, just like in any other
project. We add a build.gradle file in buildSrc and define the dependencies for
the JUnit test framework. In the following sample build file, we add a dependency
for JUnit:

repositories.mavenCentral()

dependencies {
 testCompile 'junit:junit:4.10'
}

Next, we can add a test case named InfoPluginTest.groovy in the buildSrc/src/
test/groovy/sample directory:

package sample

import org.gradle.api.*
import org.gradle.testfixtures.ProjectBuilder
import org.junit.*

class InfoPluginTest {

 @Test
 void infoTaskIsAddedToProject() {
 final Project project = ProjectBuilder.builder().build()
 project.apply plugin: sample.InfoPlugin
 assert project.tasks.findByName('info')
 }

 @Test
 void configurePrefix() {
 final Project project = ProjectBuilder.builder().build()
 project.apply plugin: sample.InfoPlugin
 project.info.prefix = 'Sample'
 assert project.info.prefix == 'Sample'
 }
}

We use the ProjectBuilder class to create a fixture for the Project object. We
can apply the plugin to the project and then test to see if the info task is available.
The Project object cannot execute tasks in the project; it is only for simple checks
like this one.

Chapter 10

[255]

When we invoke the info task from the command line, our test class is compiled
and executed. If a test fails, the project will abort, but if all tests pass, the
project continues.

Creating a plugin in a standalone project
We have defined our plugin in the project source directory, but we cannot re-use
it in another project. We will learn how we can distribute our plugin logic, using a
standalone project. Also, we will see how we can use the plugin in other projects.

By placing the plugin code in the buildSrc directory, we have separated the
definition of the plugin and the usage. The plugin still cannot be used by other
projects. To make the plugin reusable, we create a standalone project and create an
artifact with the plugin code and publish the artifact to a repository. Other projects
can then get the plugin from the repository and use the build logic from the plugin in
the project.

We already have the code for the plugin and the test code in the buildSrc directory
(from the previous section). We can copy this code to a new directory with the
project for the plugin. In this new directory, we must also create a build.gradle file.
The implicit dependencies and plugin added to a project in the buildSrc directory
must be made explicit in a standalone project.

Let's create a new Gradle project in the directory plugin, and create the file build.
gradle with the following content:

apply plugin: 'groovy'
apply plugin: 'maven'
version = 1.0
group = 'sample.infoplugin'
archivesBaseName = 'infoplugin'
repositories.mavenCentral()
dependencies {
 compile gradleApi()
 groovy localGroovy()
 testCompile group: 'junit', name: 'junit', version: '4.10'
}

uploadArchives {
 repositories.mavenDeployer {
 repository(url: 'file:../lib')
 }
}

Writing Custom Tasks and Plugins

[256]

Next, we create the plugin/src/main/groovy/sample and plugin/src/
test/groovy/sample directories. We copy the InfoPlugin.groovy and
InfoPluginExtension.groovy files to the src/main/groovy/sample
directory, and the InfoPluginTest.groovy file to the plugin/src/test/
groovy/sample directory.

So far we have all the ingredients to create an artifact JAR file with the plugin
code. The artifact is deployed to the local ../lib directory. We can, of course,
define any Maven or Ivy repository to deploy the plugin artifact into.

To make sure Gradle can find the plugin, we must provide a properties file in the
plugin/src/main/resources/META-INF/gradle-plugins directory with the
name of our plugin. The properties file has a property key implementation-class
with the full class name of the Plugin class.

We want to name our plugin as info, so in the plugin/src/main/resources/
META-INF/gradle-plugins directory we create the info.properties file with
the following code:

implementation-class = sample.InfoPlugin

We are ready to create the artifact with the plugin and upload it to our repository.
We invoke the uploadArchives task, and we get the following output:

$ gradle uploadArchives

:compileJava UP-TO-DATE

:compileGroovy UP-TO-DATE

:processResources

:classes

:jar

:uploadArchives

Uploading: sample/infoplugin/infoplugin/1.0/infoplugin-1.0.jar to
repository remote at file:../lib

Transferring 8K from remote

Uploaded 8K

BUILD SUCCESSFUL

Total time: 3.076 secs

Chapter 10

[257]

The plugin is now in the repository. To use the plugin, we must create a new Gradle
project. We must extend the classpath of this new project, and include the plugin
as a dependency. We use the buildscript{} script block, where we can configure
the repository location and a classpath dependency. For our sample we reference
the local ../lib directory. In the dependencies section we set the classpath
configuration to the InfoPlugin artifact.

The following sample build file contains the definitions:

buildscript {
 repositories {
 maven {
 url 'file:../lib'
 }
 }
 dependencies {
 classpath group: 'sample.infoplugin', name: 'infoplugin',
version: '1.0'
 }
}

apply plugin: 'info'

info.prefix = 'Gradle version'

Our project now has the info task from the plugin. We can configure the plugin
extension through the info object or the configuration closure.

If we run the info task, we get the following output:

$ gradle info

:info

Gradle version: 1.1

BUILD SUCCESSFUL

Total time: 3.073 secs

Writing Custom Tasks and Plugins

[258]

Summary
In this chapter we have learned how to create our own enhanced task. We have
seen how to add the class definition in our build file and use it directly in the build.

If we put the task definition in the buildSrc directory of a Gradle project or
multi-project build, we can re-use the task in the context of the Gradle build. Also,
we now have a good separation of the definition and configuration of the task.

Finally, we have learned how to publish the task as an artifact to a repository.
Other projects can include the task in their classpath by using the buildscript{}
script block. Then, we can configure and use the task in the project.

In this chapter we also learned how to write our own Gradle plugin. We have
seen how to add a plugin class to our Gradle build file. Then we learned to use
the buildSrc directory and place the source code of the plugin in there.

Finally, to make the plugin really reusable by other projects, we put the plugin code
in a separate project. The plugin code is then packaged into a JAR file and published
to a repository. Other projects can then define a dependency on the plugin and use
the build logic from the plugin.

In the next chapter we see how we can use Gradle in continuous integration tools.

Using Gradle with Continuous
Integration

It is good practice to have a continuous integration tool in a software project. With a
continuous integration tool, we can automatically build our software in a controlled
environment. In this chapter, we are going to take a look at the support for Gradle in
several continuous integration tools.

First, we are going to create a sample Java project and use Git as a version control
repository. Then, we are going to see how the continuous integration servers Jenkins,
JetBrains TeamCity, and Atlassian Bamboo support Gradle.

Creating a sample project
Before we can see the support for Gradle in the several continuous integration
servers, we must have a sample project. We are going to create a very simple
Java project with a test class and add it to a Git repository, in this section.

We already created a Java project earlier. We are going to re-use the code in this
chapter for our sample project. We want to have a test in our project, so that we
can see how the continuous integration tools can handle test results. Finally, we
want to have more than one artifact for our project; we want to have a JAR file
with the compiled classes, source code, and Javadoc generated documentation.

Using Gradle with Continuous Integration

[260]

We first create a build.gradle file in a directory, with the following contents:

// We create a Java project so we need the Java plugin
apply plugin: 'java'

// Set base name for archives.
archivesBaseName = 'gradle-sample'

// Version of the project.
version = '1.0'

// Definine Maven central repository for downloading
// dependencies.
repositories {
 mavenCentral()
}

// We have a single dependency on JUnit
// for the testCompile configuration
dependencies {
 testCompile 'junit:junit:[4.8,)'
}

// Extra task to create a JAR file with the sources.
task sourcesJar(type: Jar) {
 classifier = 'sources'
 from sourceSets.main.allSource
}

// Extra task to create a JAR file with Javadoc
// generated documentation.
task docJar(type: Jar, dependsOn: javadoc) {
 classifier = 'docs'
 from javadoc.destinationDir
}

// Add extra JAR file to the list of artifacts
// for this project.
artifacts {
 archives sourcesJar
 archives docJar
}

Chapter 11

[261]

Next, we create three Java source files in the src/main/java/gradle/sample
directory. First, we have an interface with a single method to return a
welcome message:

// File: src/main/java/gradle/sample/ReadWelcomeMessage.java
package gradle.sample;

/**
 * Read welcome message from source and return value.
 */
public interface ReadWelcomeMessage {

 /**
 * @return Welcome message
 */
 String getWelcomeMessage();
}

Next, we create an implementation of this interface and return a String value:

// File: src/main/java/gradle/sample/ReadWelcomeMessageImpl.java
package gradle.sample;

import java.util.ResourceBundle;

/**
 * Simple implementation to return welcome message.
 */
public class ReadWelcomeMessageImpl implements ReadWelcomeMessage {

 public ReadWelcomeMessageImpl() {
 }

 /**
 * Return "Welcome to Gradle." String value.
 *
 * @return Welcome to Gradle.
 */
 public String getWelcomeMessage() {
 return "Welcome to Gradle.";
 }
}

Using Gradle with Continuous Integration

[262]

Finally, we have a Java application class that uses the interface and implementation
class we already added:

// File: src/main/java/gradle/sample/SampleApp.java
package gradle.sample;

import java.util.ResourceBundle;

public class SampleApp {

 public SampleApp() {
 }

 public static void main(final String[] arguments) {
 final SampleApp app = new SampleApp();
 app.welcomeMessage();
 }

 public void welcomeMessage() {
 final String welcomeMessage = readMessage();
 showMessage(welcomeMessage);
 }

 private String readMessage() {
 final ReadWelcomeMessage reader = new
ReadWelcomeMessageImpl();
 final String message = reader.getWelcomeMessage();
 return message;
 }

 private void showMessage(final String message) {
 System.out.println(message);
 }
}

Let's create a test to verify that our ReadWelcomeMessageImpl class returns the
expected String value. We add the file ReadWelcomeMessageTest.java in the
directory src/test/java/gradle/sample:

// File: src/test/gradle/sample/ReadWelcomeMessageTest.java
package gradle.sample;

import org.junit.Assert;

Chapter 11

[263]

import org.junit.Test;

public class ReadWelcomeMessageTest {

 @Test
 public void readWelcomeMessage() {
 final ReadWelcomeMessage reader = new
ReadWelcomeMessageImpl();
 final String realMessage = reader.getWelcomeMessage();

 final String expectedMessage = "Welcome to Gradle.";

 Assert.assertEquals("Get text from implementation",
expectedMessage, realMessage);
 }
}

To check if everything is okay, we run Gradle with the build task. We should see the
following output:

$ gradle build

:compileJava

:processResources UP-TO-DATE

:classes

:javadoc

:docJar

:jar

:sourcesJar

:assemble

:compileTestJava

:processTestResources UP-TO-DATE

:testClasses

:test

:check

:build

BUILD SUCCESSFUL

Total time: 9.031 secs

Using Gradle with Continuous Integration

[264]

We have all the source code, so let's put it in a version control repository. We can
use any version control system we want, as long as the continuous integration server
supports the version control system. We create a Git repository for our example,
because it is easy to set up a local repository and then to use it in the continuous
integration tools. In order to use Git, we must have it installed on our computers.
We create a new Git repository in the current project directory, with the init
command in Git:

$ git init

Initialized empty Git repository in /Users/mrhaki/Projects/java-project

Next, we add the file to the Git staging area, with the add command:

$ git add .

We commit the code to the repository, with the commit command in Git:

$ git commit -m "First commit."

[master (root-commit) e80a23f] First commit.

 6 files changed, 121 insertions(+), 0 deletions(-)

 create mode 100644 build.gradle

 create mode 100644 src/main/java/gradle/sample/ReadWelcomeMessage.java

 create mode 100644 src/main/java/gradle/sample/ReadWelcomeMessageImpl.
java

 create mode 100644 src/main/java/gradle/sample/SampleApp.java

 create mode 100644 src/test/java/gradle/sample/ReadWelcomeMessageTest.
java

Our project is ready to be used in the continuous integration tools.

Using Jenkins
One of the most popular open source continuous integration tools is Jenkins.
The good news is that Jenkins has support for Gradle via the Gradle plugin.
Let's see how we can use the plugin to add our little Java project to Jenkins.

Chapter 11

[265]

To install Jenkins on our computer, we must first download the installation files
from the Jenkins website. A native installer is available for Mac OS X, Windows,
and Linux. We simply run the installer software to install Jenkins on our computer.
We can also download a WAR file and deploy it to a Java web container to install
Jenkins. The WAR file is also a Java executable archive. This means that we can
simply run the WAR file with the java -jar command to execute Jenkins.

Adding the Gradle plugin
First, we must install the Gradle plugin in Jenkins. We launch a web browser and
access the URL http://localhost:8080. From the Jenkins main page, we select
the link Manage Jenkins, which takes us to the appropriate page:

Using Gradle with Continuous Integration

[266]

Here, we select Manage plugins. On the Plugin Manager page, we can use the Filter
box at the top-right corner to search for Gradle Plugin:

We select the plugin and click on the button Install without restart. If the installation
of the plugin is successful, we see the following screen:

We need to restart Jenkins to make the plugin active and usable for our
Jenkins projects.

Configuring Jenkins job
Jenkins is now set up with the Gradle plugin, and it is time to create a job. From
the main page, we select the New job link. We get a screen where we can fill in a
name for the job and select the Build a free-style software project radio button:

Chapter 11

[267]

If we have filled in the name and selected the radio button, we can click on the OK
button. We go to the configuration page of our job. The name of the job is already
filled with the value from the previous screen:

Using Gradle with Continuous Integration

[268]

We must at least define our Git repository in the Source Code Management section.
Also, we must add a build step in the Build section. We select the Git radio button
to define the location of our Git repository in the URL of repository field. If we
select the button Add build step, in the Build section, we can see the option Invoke
Gradle script. Thanks to the Gradle plugin, we now have this option highlighted in
the following screenshot:

Chapter 11

[269]

We select the option Invoke Gradle script, and Jenkins adds new fields to configure
our Gradle build:

First, we can choose if we want to use the Gradle wrapper for this project. We don't
need it for our project, so we leave this unchecked.

Next, we can choose a Gradle version. We can install multiple Gradle versions for
Jenkins, and we can choose which version we want to use. The default version is
the one that is available on the system path. We will learn later how we can add
more Gradle versions to Jenkins.

Using Gradle with Continuous Integration

[270]

We can give our build step a short description in the Build step description field.
The Switches field can contain the Gradle command-line options we want to use.
For example, to exclude a task, we can set the value -x taskName. The Tasks field
must contain the tasks we want to execute. If our project has default tasks set and
we want to run those, we can leave the Tasks field empty. For our project, we want
to invoke the clean and build tasks, so we set the value to clean build.

The Root Build script field is for a multi-project build where the root script is not
in a default location. We can define the custom location here.

If a Gradle project has a build file name other than the default build.gradle, we
can set the value in the Build File field.

Running the job
We have the basic setup for running our Gradle project. We click on the Save button
and close the configuration. We return to the job page. At the left, we see a menu
with the link Build now. We click on the link, and Jenkins starts the job:

Our code will be checked out from the Git repository, and the Gradle tasks
clean and build are run. If the job is done, we can see the build result. From
the build result page, we can see the console output when we click on the Console
Output link:

Chapter 11

[271]

At the left, we even see all Gradle tasks that have been executed. We can click on
the links and jump directly to any output of the task.

Using Gradle with Continuous Integration

[272]

Configuring artifacts and test results
To see the generated artifacts and test results, we must add two post-build actions
to the job configuration. First, we select the Configure job link. At the Post-build
Actions section, we click on the Add post-build action button. Here, we first select
Archive the artifacts:

Chapter 11

[273]

Next, we select Publish JUnit test result report:

Using Gradle with Continuous Integration

[274]

The artifacts are saved in the build/libs directory of our project. So, in the Files to
archive field, we enter build/libs/*.jar. And, we set the value for the field Test
report XMLs to build/test-results/*.xml:

Chapter 11

[275]

The configuration is done, so we click on the Save button. We can run the job again,
and this time, we see the artifacts of our projects as downloadable links on the job
page. The test results are also shown, and we can even see more details if we click
on the Test Result link:

Adding Gradle versions
We can add extra Gradle versions to Jenkins. If, for example, some projects rely on
Gradle 1.0 and others on Gradle 1.1, we must be able to add the Gradle versions.

Using Gradle with Continuous Integration

[276]

From the Manage Jenkins page, we select Configure System. The page has a Gradle
section, where we can add new Gradle installations:

Chapter 11

[277]

If we click on the Add Gradle button, we can define a name for our Gradle
installation in the Gradle name field. We also see a checkbox, Install automatically.
If this is checked, Jenkins will download a Gradle version for us from the Internet.
We select the version from the Version drop-down box:

Using Gradle with Continuous Integration

[278]

If we want to use a locally installed instance of Gradle, we must uncheck the
Install automatically checkbox. Now, we can set the Gradle location in the
GRADLE_HOME field:

We must click on the Save button to save the changes. Now, we can choose the
correct Gradle version in the jobs.

Chapter 11

[279]

Using JetBrains TeamCity
JetBrains TeamCity is a commercial continuous integration server. TeamCity
has a Professional Server license. This means that we can create 20 build
configurations and one build agent. If we need more configurations or build
agents, we can purchase other licenses. In this section, we will see how we can
create a build plan with Gradle.

We can download installer software for Mac OS X, Windows, and Linux, from
the JetBrains TeamCity website. We run the installer software to install TeamCity
on our computer. TeamCity is also available as an archive for all platforms. To
install the archive, we only have to unpack the contents to a directory on our
computer. TeamCity is also available as a WAR file, which can be deployed
to a Java web container.

Creating a project
After we install TeamCity, we open a web browser and go to the URL http://
localhost:8011/. We can create a new project from the Administration page.
We can define the name of our project and provide a short description:

Using Gradle with Continuous Integration

[280]

We click on the Create button to create the project and go to an overview page
of our project:

Chapter 11

[281]

It is time to add a new build configuration. We click on the Create build
configuration button in the Build Configurations section to add a build
configuration. On the following screen, we can define the path of the artifacts
in our project in the Artifact paths field. Here, we fill in build/libs/*.jar:

Using Gradle with Continuous Integration

[282]

We must click on the VCS settings button to go to the next page and define our Git
repository as version controller repository. Here, we must set the Fetch URL field
with the location of the Git repository:

Chapter 11

[283]

We save the configuration and return to an overview page with the VCS:

Using Gradle with Continuous Integration

[284]

On this screen, we click on the Add Build Step button. We are taken to a new screen,
where we can select the Runner type of the build. Here, we select the Gradle runner
and click on the Save button:

We are on the configuration page for the build step:

Chapter 11

[285]

We can fill in a descriptive name for this build step in the Step name field. In the
Gradle Parameters section, we can set the tasks in the Gradle tasks field. For our
project, we want to invoke the clean and build tasks, so we fill in clean build.
Note that we can enable Incremental building for multi-project builds. TeamCity
will use the buildDependents task.

Using Gradle with Continuous Integration

[286]

To set the Gradle version, we fill in the Gradle home path field. Extra command-line
parameters can be filled in the Additional Gradle command line parameters field.

If our project has a Gradle wrapper, we can check the checkbox Gradle Wrapper.
TeamCity will then use the gradlew or gradlew.bat scripts, instead of the Gradle
home path location, to run Gradle.

Running the project
We can save the build configuration, and we are ready to run it. At the top right, we
can see the Run button with an ellipsis. When we click on the ellipsis, we get a dialog
window with options that we can set before we run the build:

Chapter 11

[287]

We leave all options unchanged and click on the Run Build button.

TeamCity instructs the build agent to run our build configuration. The code
is checked out from the repository, and the Gradle tasks clean and build are
invoked. On the Projects page, we see a summary of the build:

We can click on the project and see more details. The overview page of the
project shows the date of the project build, the build agent used, and a summary
of test results:

Using Gradle with Continuous Integration

[288]

If we click on the Tests tab, we see the tests that have run and the time it took to
execute them:

The Build Log tab page shows the output of the build process. Because we selected the
debug level on the build configuration page, we see very detailed information here:

Chapter 11

[289]

Finally, on the Artifacts page, we see the generated JAR files. We can click on the
filename and see the contents of the files:

Using Atlassian Bamboo
The last continuous integration tool we are going to configure is Atlassian Bamboo.
Bamboo is a commercial continuous integration server. There is a 30-day evaluation
license available from the Atlassian website. We will see how we can configure
Bamboo to use Gradle as a build tool for our Java project.

Using Gradle with Continuous Integration

[290]

We can install Bamboo on our local computer. We first need to download the
installation package from the Bamboo website. We can choose native installers
for Mac OS X, Windows, and Linux. Alternatively, we can simply download a
packaged version and unzip it to a directory on our computer. Finally, we can
download a WAR file and deploy it to a web container.

Defining a build plan
Bamboo has no Gradle runner or plugin, but we can define a build plan and add
a so-called script task. A script task can run any script as part of the build plan.
To make sure Bamboo can build our Java project, we must add the Gradle wrapper
scripts to the project.

We change our build.gradle file and add the task createWrapper:

// We create a Java project so we need the Java plugin
apply plugin: 'java'

// Set base name for archives.
archivesBaseName = 'gradle-sample'

// Version of the project.
version = '1.0'

// Definine Maven central repository for downloading
// dependencies.
repositories {
 mavenCentral()
}

// We have a single dependency on JUnit
// for the testCompile configuration
dependencies {
 testCompile 'junit:junit:[4.8,)'
}

// Extra task to create a JAR file with the sources.
task sourcesJar(type: Jar) {
 classifier = 'sources'
 from sourceSets.main.allSource
}

// Extra task to create a JAR file with Javadoc
// generated documentation.

Chapter 11

[291]

task docJar(type: Jar, dependsOn: javadoc) {
 classifier = 'docs'
 from javadoc.destinationDir
}

// Add extra JAR file to the list of artifacts
// for this project.
artifacts {
 archives sourcesJar
 archives docJar
}

// Create Gradle wrapper
task createWrapper(type: Wrapper)

We run the createWrapper task from the command line. We now have the
script files gradlew and gradlew.bat. Also, the directory gradle is created
with the configuration for the Gradle wrapper. We add the directory and files
to our Git repository:

$ git add .

$ git commit -m "Add Gradle wrapper output."

We are ready to create a new build plan in Bamboo. We start a web browser and
open the URL http://localhost:8085/. After we have logged in to Bamboo, we
select the Create Plan link. A new page is opened, where we can choose to create a
new plan or Maven project:

Using Gradle with Continuous Integration

[292]

We select the option Create a New Plan. We go to a new page, where we can set the
properties of the build plan:

We must define a project name in the Project Name field. Bamboo also expects
a short identifier in uppercase characters, as the project key, in the Project Key
field. The plan that is part of the project also has a name and key; we fill these
the Plan Name and Plan Key fields. We can set a short description in the Plan
Description field.

In the Source Repositories section, we can define the Git repository location
for our project.

Chapter 11

[293]

Finally, in the Build Strategy section, we set the value of the Build Strategy
drop-down box to Manual. This means we manually start the build via the
run action in the Bamboo user interface.

We click on the Configure Tasks button to add tasks to our plan. A task contains
some logic we want to execute as part of the plan.

Using Gradle with Continuous Integration

[294]

The first task is automatically added and is responsible for checking out the source
code of the Git repository. We click on the Add Task button to create a new task.

A dialog window is shown, and we select the Script task from the Builder
section. With this task, we can configure the Gradle wrapper scripts to
be executed.

We return to the tasks window, and we can fill in the fields under
Script Configuration:

Chapter 11

[295]

We fill in a description in the Task Description field. Script location must be
set to File instead of Inline. The Script file field has the location of the gradlew
or gradlew.bat script we want invoked.

In the Argument field, we pass the arguments to the gradlew script. We want
to invoke the clean and build tasks, so we set the value to clean build.

Using Gradle with Continuous Integration

[296]

We are ready to click on the Save button to save our script task configuration.
The task is added to the list of tasks:

Chapter 11

[297]

We enable the plan in the Enable this Plan? section by checking the checkbox
Yes please!. Next, we click on the Create button to finish the configuration and
save the plan in Bamboo.

Using Gradle with Continuous Integration

[298]

Running the build plan
We are ready to run the build and click on the Run button at the top right of the
page. While the build is running, we can see some of the log output. At the end
of the log output, we can see that the gradle-1.1-bin.zip file is downloaded
because of the Gradle wrapper script:

Chapter 11

[299]

After the build is finished, we can see the results. We also want to add the project
artifacts to our plan, and the test results as well. Therefore, we select the option
Configure plan from the Actions menu:

Using Gradle with Continuous Integration

[300]

We go to the Artifacts tab page and click on the Create Definition button to add
a new artifact definition:

We see a dialog window, and we can define the name, location, and pattern of
the artifacts:

Chapter 11

[301]

We fill in artifacts in the Name field and build/libs in the Location field. The
Copy Pattern field is filled with the value *.jar, to include all JAR files. We click
on the Create button to finish the configuration of the artifacts.

Using Gradle with Continuous Integration

[302]

Next, we select the Tasks tab page and click on the Add Task button to create
a new task:

In the dialog window with task types, we select JUnit Parser from the Tests section.
Bamboo shows the configuration fields for this task:

Chapter 11

[303]

We set the Task Description with the value Test results. In the field Specify
custom results directories, we set the pattern build/test-results/*.xml.

Using Gradle with Continuous Integration

[304]

We are ready to run our plan again, but this time we have test results:

Chapter 11

[305]

We click on the Artifacts tab and see that the plan has produced artifacts:

Using Gradle with Continuous Integration

[306]

If we click on the artifacts link, we are taken to a page where we can download
each artifact JAR file:

Summary
In this chapter, we have learned how we must configure continuous integration
tools Jenkins, JetBrains TeamCity, and Atlassian Bamboo to build our Java project
with Gradle.

Jenkins and TeamCity have good support for Gradle builds. We can choose to
use either a locally installed Gradle version or the Gradle task wrapper scripts.
Defining which tasks to run is easy.

Bamboo has no real support for Gradle builds. We can use the script build option
and the Gradle task wrapper support to work around this. This way, we can still
run Gradle builds with Bamboo.

In the next chapter, we will learn how we can integrate Gradle with Integrated
Development Environments (IDEs) Eclipse and JetBrains IntelliJ.

IDE Support
When we develop applications, we usually use an Integrated Development
Environment (IDE). An IDE provides support for writing code for our applications.
We can write our code in Java, Groovy, or Scala. We have seen how we can use
Gradle to define, for example, library dependencies to compile the code. We want
to use the same information that we have defined in a Gradle build file in a project
in our favorite IDE.

In this chapter, we will learn how we can use Gradle plugins to generate the project
files with classpath dependencies for Eclipse and JetBrains IntelliJ IDEA. We will
also learn how we can customize the file generation to add extra configuration data.

Next, we will see the Eclipse and IntelliJ IDEA support for running Gradle tasks
from within the IDE.

Using the Eclipse plugin
The Eclipse plugin can generate the project files necessary to import the project in
Eclipse. In this section, we will see which tasks are added by the plugin and how
we can customize the generated output.

If we have a Java project and want to import the project into Eclipse, we must use
the Eclipse plugin to generate the Eclipse project files. Each Eclipse project has
as minimum a .project file and a .classpath file. The .project file contains
metadata about the project, such as the project name. The .classpath file contains
classpath entries for the project. Eclipse needs this to be able to compile the source
files in the project. The Eclipse plugin will try to download the artifact with source
files belonging to a dependency as well. So, if we import the project into Eclipse and
the source files are available, we can directly see the source of dependent class files.

IDE Support

[308]

For a Java project, an additional Java Development Tools (JDT) configuration
file is created in the .settings folder. The name of the file is org.eclipse.jdt.
core.prefs.

Let's create a simple Gradle build file for a Java project. The code for the build file is
shown in the following code snippet:

apply plugin: 'java'
apply plugin: 'eclipse'

version = 1.0

sourceCompatibility = 1.6
targetCompatibility = 1.6

description = 'Sample project'

ext {
 slf4jVersion = '1.6.6'
 slf4jGroup = 'org.slf4j'
}

configurations {
 extraLib
}

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'

 extraLib "$slf4jGroup:slf4j-api:$slf4jVersion",
"$slf4jGroup:slf4j-simple:$slf4jVersion"
}

We apply the Java and Eclipse plugins for our project. We set some project
properties, such as version, description, source, and target compatibility. We
define a dependency on JUnit for the testCompile configuration. Also, we add
an extra custom configuration with a dependency on the slf4j logging library.

Chapter 12

[309]

First, let's see which tasks are added to our project by the Eclipse plugin. We
invoke the tasks task and look at all the tasks in our plugin, shown in the
following code snippet:

$ gradle tasks --all

...

IDE tasks

cleanEclipse - Cleans all Eclipse files.

 cleanEclipseClasspath

 cleanEclipseJdt

 cleanEclipseProject

eclipse - Generates all Eclipse files.

 eclipseClasspath - Generates the Eclipse classpath file.

 eclipseJdt - Generates the Eclipse JDT settings file.

 eclipseProject - Generates the Eclipse project file....

...

The eclipse task is dependent on the following three tasks: eclipseClasspath,
eclipseJdt, and eclipseProject. Each task generates a single file. The
eclipseClasspath task generates the .classpath file, eclipseProject generates
the .project file, and eclipseJdt generates org.eclipse.jdt.core.prefs.

When we execute the eclipse task from the command line, we get the
following output:

$ gradle eclipse

:eclipseClasspath

Download http://repo1.maven.org/maven2/junit/junit/4.8/junit-4.8.pom

Download http://repo1.maven.org/maven2/junit/junit/4.8/junit-4.8-sources.
jar

Download http://repo1.maven.org/maven2/junit/junit/4.8/junit-4.8.jar

:eclipseJdt

:eclipseProject

:eclipse

BUILD SUCCESSFUL

Total time: 8.672 secs

Note that the sources of the JUnit library are downloaded. We now have the
.classpath and .project files in our project folder. In the .settings folder
we have the org.eclipse.jdt.core.prefs file.

IDE Support

[310]

The .project file has the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
 <name>chapter12</name>
 <comment>Sample project</comment>
 <projects/>
 <natures>
 <nature>org.eclipse.jdt.core.javanature</nature>
 </natures>
 <buildSpec>
 <buildCommand>
 <name>org.eclipse.jdt.core.javabuilder</name>
 <arguments/>
 </buildCommand>
 </buildSpec>
 <linkedResources/>
</projectDescription>

The name element is filled with the project's folder name. We will learn how
to change this later in the chapter. The comment element contains our project
description. We have applied the Java plugin in our project, and hence the
Java nature and build command are added to the project configuration.

If we look at the .classpath file, we can see a classpathentry element with
the JUnit dependency, as shown in the following code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>
 <classpathentry kind="output" path="bin"/>
 <classpathentry kind="con" path="org.eclipse.jdt.launching.
JRE_CONTAINER" exported="true"/>
 <classpathentry sourcepath="/Users/mrhaki/.gradle/
caches/artifacts-14/filestore/junit/junit/4.8/source/
abe171e0fc1242d1fe10e8dc43bce031e3f65560/junit-4.8-sources.jar"
kind="lib" path="/Users/mrhaki/.gradle/caches/artifacts-14/filestore/
junit/junit/4.8/jar/4150c00c5706306ef0f8f1410e70c8ff12757922/junit-
4.8.jar" exported="true"/>
</classpath>

The classpathentry element has a reference to the location in the Gradle cache
of the downloaded JUnit library. Note that the sourcepath attribute references
the source files.

Chapter 12

[311]

The last generated org.eclipse.jdt.core.prefs file has the following contents:

#
#Thu Aug 21 09:36:25 CEST 2012
org.eclipse.jdt.core.compiler.debug.localVariable=generate
org.eclipse.jdt.core.compiler.compliance=1.6
org.eclipse.jdt.core.compiler.codegen.unusedLocal=preserve
org.eclipse.jdt.core.compiler.debug.sourceFile=generate
org.eclipse.jdt.core.compiler.codegen.targetPlatform=1.6
org.eclipse.jdt.core.compiler.problem.enumIdentifier=error
org.eclipse.jdt.core.compiler.debug.lineNumber=generate
eclipse.preferences.version=1
org.eclipse.jdt.core.compiler.codegen.inlineJsrBytecode=enabled
org.eclipse.jdt.core.compiler.source=1.6
org.eclipse.jdt.core.compiler.problem.assertIdentifier=error

We can see that the source and target compatibility we defined in the Gradle build
file are used for the properties org.eclipse.jdt.core.compiler.source, org.
eclipse.jdt.core.compiler.codegen.targetPlatform, and org.eclipse.jdt.
core.compiler.compliance.

We have added the Java plugin to our project and the Eclipse plugin knows this, so
the Java nature and builder are added to the generated .project file. If we use the
Groovy and Scala plugins, the Eclipse plugin will add the correct nature and build
configurations to the .project file.

Customizing generated files
We have several options to customize the configuration in the generated files.
The Eclipse plugin adds a DSL to configure model objects that represent Eclipse
configuration objects. If we use the DSL to configure the objects, these newly
configured objects are merged with existing configuration before the file is
generated. We can also hook into the generation process and work directly on
the model objects before and after the configuration is merged and the file is
generated. Finally, we can even use a hook to work directly on the XML
structure before the configuration file is generated.

The following steps describe the complete configuration file generation lifecycle:

1. First, the file is read from disk or a default file is used if the file is
not available.

2. Next, the beforeMerge hook is invoked. The hook accepts the model
object for the configuration file as an argument.

IDE Support

[312]

3. The implicit configuration information from the Gradle build file and the
configuration defined using the DSL are merged.

4. Then, the whenMerged hook is executed. The hook accepts the model object
for the configuration file as an argument.

5. The withXml hook is invoked. XML manipulation can happen here before
the file is written to disk.

6. Finally, the configuration file is written to disk.

Customizing using DSL
When the Eclipse plugin generates the files, it will look in the Gradle build file for
the necessary information. For example, if we set the description property of the
Project object, the comment section in the .project file is filled with the value of
that property:

The Eclipse plugin also adds a configuration script block with the name eclipse.
The configuration can be described using a simple DSL. At the top level we can add
path variables that will be used for replacing absolute paths in classpath entries. The
org.gradle.plugins.ide.eclipse.model.EclipseModel object is used and the
pathVariables() method of this class must be used to define a path variable.

Next, we can define the configuration information for the .project file in the
project section. The model object org.gradle.plugins.ide.eclipse.model.
EclipseProject is used to model the Eclipse project configuration. We can, for
example, use the name property to change the name of the project in the generated
.project file. It is good to know that Gradle can generate unique project names
for a multi-project build. A unique name is necessary to import the projects into
Eclipse. During the .project file generation, all projects that are part of the
multi-project must be known. So, it is best to run the eclipse or eclipseProject
task from the root of the project. Also, methods for adding project natures and new
build commands are available.

To customize the .classpath file generation, we can use the classpath section of
the eclipse configuration closure. Here, the org.gradle.plugins.ide.eclipse.
model.EclipseClasspath object is used to model the classpath entries of the Eclipse
project. We can use the properties plusConfigurations and minusConfigurations
to add or remove dependency configurations from the generated .classpath file.
By default, the associated source files for a dependency are downloaded, but we can
also set the downloadJavadoc property to true to download the Javadoc associated
with the dependency.

Chapter 12

[313]

The jdt section of the eclipse configuration closure can be used to change the source
and target compatibility versions. By default, the Gradle Java plugin settings are
used, but we can overrride it here. The org.gradle.plugins.ide.eclipse.model.
EclipseJdt object is used to model the Eclipse configuration.

In the following build file, we see an example of all the possible methods and
properties we can use with the DSL to customize the generated .project file:

apply plugin: 'java'
apply plugin: 'eclipse'

eclipse {
 pathVariables 'APPSERVER_HOME': file('/apps/appserver/1.0')

 project {
 name = 'sample-eclipse'

 comment = 'Eclipse project file build by Gradle'

 // Add new natures like Spring nature.
 natures 'org.springframework.ide.eclipse.core.springnature'

 // Add build command for Spring.
 buildCommand 'org.springframework.ide.eclipse.core.
springbuilder'

 // If using location attribute then type 1 is file, 2 is
folder
 linkedResource name: 'config', type: '2', location: file('/
opt/local/config')

 // If using locationUri attribute then type 1 for file/folder,
2 is virtual folder
 linkedResource name: 'config2', type: '1', locationUri:
'file:../config'

 // Define reference to other project. This is not
 // a build path reference.
 referencedProjects 'other-project'
 }
}

IDE Support

[314]

In the following example build file, we see the options to change the.classpath file:

apply plugin: 'java'
apply plugin: 'eclipse'

eclipse {
 classpath {
 // Add extra dependency configurations.
 plusConfigurations += configurations.extraLib

 // Remove dependency configurations.
 minusConfigurations += configurations.testCompile

 // Included configurations are not exported.
 noExportConfigurations += configurations.testCompile

 // Download associated source files.
 downloadSources = true

 // Download Javadoc for dependencies.
 downloadJavadoc = true

 // Add extra containers.
 containers 'ApacheCommons'

 // Change default output dir (${projectDir}/bin)
 defaultOutputDir file("$buildDir/eclipse-classes")
 }
}

The following example build file shows the configuration options to generate the
org.eclipse.jdt.core.prefs file:

apply plugin: 'java'
apply plugin: 'eclipse'

eclipse {
 jdt {
 sourceCompatibility = 1.6
 targetCompatibility = 1.6
 }
}

Chapter 12

[315]

Customizing with merge hooks
Using the DSL to customize file generation is very elegant. Remember from the
configuration file generation steps that this information is used right after the
beforeMerged and before the whenMerged hooks. These hooks take a model object as
an argument that we can use to customize. We can use the merge hooks if we want
to do something that is not possible using the project configuration or DSL.

The merge hooks can be defined in the eclipse configuration closure. For each
file, we can define a configuration closure for the beforeMerged and whenMerged
hooks. These methods are part of the org.gradle.plugins.ide.api.
XmlFileContentMerger class. Gradle will delegate the configuration closures
to the methods of this class. The beforeMerged hook is useful to overwrite
or change existing sections in the configuraton file. The cleanEclipse task cleans
all the sections in a configuration file, and by using the beforeMerged hook we
can ourselves define which parts need to be cleaned or overwritten.

The whenMerged hook is the preferred way of changing the model object. When this
hook is invoked, the model object is already configured with all settings from the
project configuration and DSL.

Each file is represented by the file property of the eclipse configuration closures.
For example, to add a merge hook to the .project file generation, we define it
353using the eclipse.project.file property.

The following table shows the class that is passed as an argument for the merge
hooks closures:

Model Merge hook argument Description
Project org.gradle.plugins.ide.

eclipse.model.Project
Model object with properties for
.project file generation.

Classpath org.gradle.plugins.ide.
eclipse.model.Classpath

Model object with properties for
.classpath file generation.

Jdt org.gradle.plugins.ide.
eclipse.model.Jdt

Model object with properties for
org.eclipse.jdt.core.prefs
file generation.

For the Jdt model, we have an additional method named withProperties(),
to change the contents of the file. This method has a closure with an argument
of type java.util.Properties.

IDE Support

[316]

In the following example build file, we use the merged hooks to change the
configuration in the .project file:

apply {
 plugin 'java'
 plugin 'eclipse'
}

eclipse {
 project {
 file {
 beforeMerged { project ->
 // We can access the internal object structure
 // using merge hooks.
 project.natures.clear()
 }

 afterMerged { project ->
 project.name = 'sample-eclipse'

 project.comment = 'Eclipse project file build by
Gradle'

 project.natures.add 'org.springframework.ide.eclipse.
core.springnature'

 buildCommand.add 'org.springframework.ide.eclipse.
core.springbuilder'

 linkedResources.add name: 'config', type: '2',
location: 'file:/opt/local'

 referencedProjects.add 'other-project'
 }
 }
 }
}

Chapter 12

[317]

In the following example build, we use the merged hooks to change the .classpath
and org.eclipse.jdt.core.prefs files:

apply {
 plugin 'java'
 plugin 'eclipse'
}

eclipse {
 classpath {
 file {
 beforeMerged { classpath ->
 // Remove lib classpath entries.
 classpath.entries.removeAll {
 it.kind == 'lib'
 }
 }

 whenMerged { classpath ->
 classpath.entries.add kind: 'output', path:
"$buildDir/eclipse-classes"
 }
 }
 }

 jdt {
 file {
 beforeMerged { jdt ->
 }

 whenMerged { jdt ->
 jdt.sourceCompatibility = 1.6
 jdt.targetCompatibility = 1.6
 }

 whenProperties { properties ->
 properties.extraProperty = 'value'
 }
 }
 }
}

IDE Support

[318]

Customizing with XML manipulation
We have seen how to customize the configuration file generation with project
configuration, DSL, and the merge hooks. At the lowest level, there is a hook to
change the XML structure before it is written to disk. Therefore, we must implement
the withXml hook. We define a closure, and the first argument of the closure is of
type org.gradle.api.XmlProvider. The class has the asNode() method, which
returns the root of the XML as a Groovy node. This is the easiest object with which
to alter the XML contents. The asString() method returns a StringBuilder
instance with the XML contents. Finally, the asElement() method returns an
org.w3c.dom.Element object.

The asNode() method returns the Groovy groovy.util.Node class. With this
node class, we can easily add, replace, or remove nodes and attributes.

In the following example build file, we can see different ways to manipulate the
XML structure:

apply {
 plugin 'java'
 plugin 'eclipse'
}

eclipse {
 project {
 file {
 withXml { xml ->
 def projectXml = xml.asNode()
 projectXml.name = 'sample-eclipse'

 def natures = projectXml.natures
 natures.plus {
 nature {
 'org.springframework.ide.eclipse.core.
springnature'
 }
 }
 }
 }
 }

 classpath {
 file {
 withXml { xml ->

Chapter 12

[319]

 def classpathXml = xml.asNode()
 classpathXml.classpathentry.findAll { it.@kind ==
'con' }*.@exported = 'true'
 }
 }
 }
}

We have seen all the different options to change the configuration files.
Configuration changes, which we would normally make in Eclipse, can
now be done programmatically in a Gradle build file.

Merging configuration
If a file already exists, Gradle will try to merge extra information with the existing
information. Depending on the section, the information will be amended to existing
configuration data or will replace existing configuration data. This means that if we
make changes to our project settings in Eclipse, they will not be overwritten even if
we invoke one of the eclipse tasks.

To completely rebuild the project files, we must use the cleanEclipse tasks.
For each project file, there is a corresponding cleanEclipse task. For example,
to rebuild the .project file, we invoke the cleanEclipseProject task before
eclipseProject. Any changes we have made manually are removed, and a new
.project file is generated by Gradle, with the settings from our Gradle build file.

Configuring WTP
We can add Web Tools Platform (WTP) to Eclipse, to add support for Java
enterprise applications. We get support for web applications (WAR) and enterprise
applications (EAR). To generate the correct configuration files, we must add another
plugin to our Gradle build file. We add the Eclipse WTP plugin to the project and
also the War or Ear plugin.

Let's create a build file and add the War and Eclipse WTP plugins, as follows:

apply plugin: 'java'
apply plugin: 'war'
apply plugin: 'eclipse-wtp'

version = 1.0

description = 'Sample project'

IDE Support

[320]

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'
}

The Eclipse WTP plugin adds several new tasks to our Gradle build. In the
following snippet, we invoke the tasks task to see which tasks are added:

$ gradle tasks --all

...

IDE tasks

cleanEclipse - Cleans all Eclipse files. [cleanEclipseWtp]

 cleanEclipseClasspath

 cleanEclipseJdt

 cleanEclipseProject

cleanEclipseWtp - Cleans Eclipse wtp configuration files.

 cleanEclipseWtpComponent

 cleanEclipseWtpFacet

eclipse - Generates all Eclipse files. [eclipseWtp]

 eclipseClasspath - Generates the Eclipse classpath file.

 eclipseJdt - Generates the Eclipse JDT settings file.

 eclipseProject - Generates the Eclipse project file.

eclipseWtp - Generates Eclipse wtp configuration files.

 eclipseWtpComponent - Generates the Eclipse WTP component settings
file.

 eclipseWtpFacet - Generates the Eclipse WTP facet settings file.

...

The Eclipse WTP plugin includes the Eclipse plugin as well. We get all the tasks
that we have seen earlier, but new tasks are also added for WTP configuration files.
The task eclipseWtp depends on eclipseWtpComponent and eclipseWtpFacet, to
generate the corresponding configuration files. Note that the eclipse task itself also
now depends on eclipseWtp.

For each of these tasks, there is a corresponding clean task. These clean tasks will
delete the configuration files.

Chapter 12

[321]

If we execute the eclipse task, we get the following configuration files: .project,
.classpath, and org.eclipse.jdt.core.prefs. We also get additional
configuration files in the .settings folder, with the names org.eclipse.wst.
common.component and org.eclipse.wst.common.project.facet.core.xml.

$ gradle eclipse

:eclipseClasspath

:eclipseJdt

:eclipseProject

:eclipseWtpComponent

:eclipseWtpFacet

:eclipseWtp

:eclipse

BUILD SUCCESSFUL

Total time: 4.264 secs

The contents of the .project file show that the Eclipse WTP plugin added
additional natures and build commands, which is shown as follows:

<?xml version="1.0" encoding="UTF-8"?>
<projectDescription>
 <name>chapter12</name>
 <comment>Sample project</comment>
 <projects/>
 <natures>
 <nature>org.eclipse.jdt.core.javanature</nature>
 <nature>org.eclipse.wst.common.project.facet.core.
nature</nature>
 <nature>org.eclipse.wst.common.modulecore.
ModuleCoreNature</nature>
 <nature>org.eclipse.jem.workbench.JavaEMFNature</
nature>
 </natures>
 <buildSpec>
 <buildCommand>
 <name>org.eclipse.jdt.core.javabuilder</name>
 <arguments/>
 </buildCommand>
 <buildCommand>
 <name>org.eclipse.wst.common.project.facet.
core.builder</name>

IDE Support

[322]

 <arguments/>
 </buildCommand>
 <buildCommand>
 <name>org.eclipse.wst.validation.
validationbuilder</name>
 <arguments/>
 </buildCommand>
 </buildSpec>
 <linkedResources/>
</projectDescription>

In the .classpath configuration file, an additional container named org.eclipse.
jst.j2ee.internal.web.container is added, as shown in the following
code snippet:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>
 <classpathentry kind="output" path="bin"/>
 <classpathentry kind="con" path="org.eclipse.jdt.launching.
JRE_CONTAINER" exported="true"/>
 <classpathentry kind="con" path="org.eclipse.jst.j2ee.
internal.web.container" exported="true"/>
 <classpathentry sourcepath="/Users/mrhaki/.gradle/
caches/artifacts-14/filestore/junit/junit/4.8/source/
abe171e0fc1242d1fe10e8dc43bce031e3f65560/junit-4.8-sources.jar"
kind="lib" path="/Users/mrhaki/.gradle/caches/artifacts-14/filestore/
junit/junit/4.8/jar/4150c00c5706306ef0f8f1410e70c8ff12757922/junit-
4.8.jar" exported="true">
 <attributes>
 <attribute name="org.eclipse.jst.component.
nondependency" value=""/>
 </attributes>
 </classpathentry>
</classpath>

The contents of the org.eclipse.jdt.core.prefs file in the .settings folder are
not different from the standard Eclipse plugin. The org.eclipse.wst.common.
component file has the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<project-modules id="moduleCoreId" project-version="2.0">
 <wb-module deploy-name="chapter12">
 <property name="context-root" value="chapter12"/>
 <wb-resource deploy-path="/" source-path="src/main/
webapp"/>
 </wb-module>
</project-modules>

Chapter 12

[323]

Here, we find information for the web part of our project.

The last generated file in the .settings folder is org.eclipse.wst.common.
project.facet.core.xml file, here we see the servlet and Java versions.
The file has the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<faceted-project>
 <fixed facet="jst.java"/>
 <fixed facet="jst.web"/>
 <installed facet="jst.web" version="2.4"/>
 <installed facet="jst.java" version="6.0"/>
</faceted-project>

Customizing file generation
The Eclipse WTP plugin uses the same configuration options as the standard Eclipse
plugin. The plugin uses project information to set the value in the configuration files.
We can use a DSL to configure the values we want in the generated files. We can also
use the merge hooks and work with model objects to change information. The XML
structure can be changed using the withXml hook with a configuration closure.

To use the DSL, we can add an additional wtp script block to the eclipse script
block. In the wtp script block, we can change the component configuration in a
component configuration closure and the facet settings in the facet configuration
closure.

In the following example build file, we see some of the options we can set by using
the DSL:

apply plugin: 'java'
apply plugin: 'war'
apply plugin: 'eclipse-wtp'

eclipse {
 wtp {
 component {
 // Change context path of the Web application.
 // Default value is project.war.baseName.
 contextPath = '/sample-web'

 // Customize wb-resource elements of type WbResource.
 // Default for war plugin is
 // [deployPath: '/', sourcePath: project.webAppDirName]

IDE Support

[324]

and
 // for ear plugin is []
 resources += [deployPath: '/css', sourcePath: 'src/main/
css']
 // We can also use the resource() method resource
deployPath: '/css', sourcePath: 'src/main/css'

 // Remove configurations from
 // the deployed configurations.
 minusConfigurations += project.configurations.testCompile

 // Add dependency configurations to
 // the deployLibPath location.
 libConfigurations += project.configurations.testCompile

 // Extra source directory.
 sourceDirs += file('src/main/css')
 }

 facet {
 // Add extra facet via property.
 facets += [name: 'extra', version: '1.0']

 // Or via facet() method.
 facet name: 'gradle', version: '1.1'
 }
 }
}

Another method to customize file generation is by using the merge hooks.
The beforeMerged and whenMerged hooks accept a configuration closure to
set properties on a model object. In the following table, we see the types of
the model object that is passed as argument to the closure:

Model Merge hook argument Description
Component org.gradle.plugins.ide.

eclipse.model.WtpComponent
Model object with properties
for org.eclipse.wst.
common.component file
generation.

Facet org.gradle.plugins.ide.
eclipse.model.WtpFacet

Model object with properties
for org.eclipse.wst.
common.project.facet.
core.xml file generation.

Chapter 12

[325]

In the following example build file, we use the merge hooks to customize
the configuration:

apply plugin: 'java'
apply plugin: 'war'
apply plugin: 'eclipse-wtp'

version = 1.0

description = 'Sample project'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'
}

eclipse {
 wtp {
 component {
 file {
 beforeMerged { wtpComponent ->
 wtpComponent.wbEntries.clear()
 }

 whenMerged { wtpComponent ->
 wtpComponent.contextPath = '/sample-web'
 wtpComponent.deployName = 'sample'
 }
 }
 }

 facet {
 file {
 beforeMerged { wtpFacet ->
 }

 whenMerged { wtpFacet ->
 def java = wtpFacet.facets.find { it.facet ==
'jst.java' }
 java.version = '5.0'
 }
 }
 }
 }
}

IDE Support

[326]

Finally, we can manipulate the XML with the withXml hook. The argument is of
type XmlProvider, just like the standard plugin. In the closure, we can change
nodes and attributes.

The following example build file shows how we can manipulate the XML:

apply plugin: 'java'
apply plugin: 'war'
apply plugin: 'eclipse-wtp'

version = 1.0

description = 'Sample project'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'
}

eclipse {
 wtp {
 component {
 file {
 withXml { componentXml ->
 def root = componentXml.asNode()
 root.'wb-module'.@'deploy-name' = 'sample'
 }
 }
 }

 facet {
 file {
 withXml { facetXml ->
 def root = facetXml.asNode()
 root.installed.find { it.@facet == 'jst.web' }.@
version = '2.5'
 }
 }
 }
 }
}

Chapter 12

[327]

Using the IntelliJ IDEA plugin
IntelliJ IDEA from JetBrains is another IDE we can use to develop applications.
Gradle has the IDEA plugin to generate the project files for IntelliJ IDEA. This means
we can simply open the project in IntelliJ IDEA. The dependencies are set correctly so
as to compile the project in the IDE. In this section, we will see how we can generate
those files and customize file generation.

IntelliJ IDEA supports a folder-based and file-based format for the project files. The
IDEA plugin generates files for the file-based format. The file format for the project
files is XML. The workspace project file has the extension .iws and contains personal
settings. The project information is stored in a file with extension .ipr. The project
file can be saved in a version control system, because it doesn't have reference to
local paths. The workspace project file has a lot of personal settings and shouldn't
be put in a version control system.

For a Java project, we have a third project file with the exension .iml. This file
contains dependency references with local path locations. We shouldn't put this
file in a version control system. The IDEA plugin can just, like the Eclipse plugin,
download associated source files for a dependency. We can also configure and
download the associated Javadoc files. The IDEA plugin works together with
the Java plugin. If we have a Gradle build file and apply both the Java and IDEA
plugins, a specific Java configuration is added to the project files.

Let's create an example build file and apply the IDEA plugin, as shown in the
following code snippet:

apply plugin: 'java'
apply plugin: 'idea'

version = 1.0

sourceCompatibility = 1.6
targetCompatibility = 1.6

description = 'Sample project'

ext {
 slf4jVersion = '1.6.6'
 slf4jGroup = 'org.slf4j'
}

configurations {
 extraLib
}

IDE Support

[328]

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'
 extraLib "$slf4jGroup:slf4j-api:$slf4jVersion",
"$slf4jGroup:slf4j-simple:$slf4jVersion"
}

First, we execute the tasks task and see which tasks are added by the plugin,
as follows:

$ gradle tasks --all

...

IDE tasks

cleanIdea - Cleans IDEA project files (IML, IPR)

 cleanIdeaModule

 cleanIdeaProject

idea - Generates IDEA project files (IML, IPR, IWS)

 ideaModule - Generates IDEA module files (IML)

 ideaProject - Generates IDEA project file (IPR)

 ideaWorkspace - Generates an IDEA workspace file (IWS)

...

We have an idea task that is dependent on the following three other tasks:
ideaWorkspace, ideaModule, and ideaProject. Each of these tasks can
generate a project file. To remove the module and project files, we can execute
the cleanIdeaModule and cleanIdeaProject tasks or simply the cleanIdea task.
There is no cleanIdeaWorkspace task, because the workspace file contains personal
settings. These settings are probably set via the user interface of IntelliJ IDEA and
shouldn't be removed by a Gradle task.

When we run the idea task from the command line and look at the output which is
as follows, we see that all the tasks are executed and we now have three project files:

$ gradle idea

:ideaModule

Chapter 12

[329]

:ideaProject

:ideaWorkspace

:idea

BUILD SUCCESSFUL

Total time: 4.477 secs

Customizing file generation
The IDEA plugin has several ways to customize the configuration in the generated
files. The plugin will look in the project settings and use the information in the
generated files. For example, we can set the source and target compatibility versions
in our Gradle project and the plugin will use them to set a correct value in the
generated project file.

We can use a DSL to change the configuration information before the file is
generated. Gradle also offers hooks where we can manipulate model objects before
and after the project information and DSL configuration is applied. To change the
generated XML structure, we can implement the withXml hook. We can alter the
XML just before it is written to disk. To change the contents of the workspace file,
we should use the withXml hook. The workspace file has an empty model object
and has no DSL, because the contents are very specific and they contain a lot of
personal settings.

Customizing using DSL
The IDEA plugin adds a new idea configuration script block that is used to change
the project files' contents. For the module and project files, we can use a DSL to set
the configuration settings. Each file has its own configuration script block.

For module file generation, we can change the name of the file. But, it is best to
leave it unchanged. Gradle will make sure the file names are unique within a
multi-project build. IntelliJ IDEA requires that the module names be unique for
a multi-module project.

IDE Support

[330]

IntelliJ IDEA has several scopes for dependencies. We can customize which
dependency configuration apply to which scope. The following table shows the
default mapping of IntelliJ IDEA scopes with Gradle dependency configurations:

IntelliJ IDEA scope Gradle configuration
Compile project.configurations.compile

Runtime project.configurations.runtime-project.
configurations.compile

Test project.configurations.testRuntime-
project.configuations.runtime

Provided Not set

Each scope has a plus and minus key. We can add additional configurations
using the plus key and remove configurations with the minus key.

In the following example build file, we see the different options and methods
of the DSL used to change the project file contents:

apply plugin: 'java'
apply plugin: 'idea'

idea {
 project {
 // Set JDK name. Default is from Java version
 // used to run Gradle.
 jdkName = '1.6'

 // Set Java language level for the project.
 // Default value is project.sourceCompatibility.
 languageLevel = '1.6' // Or JDK_1_6

 // For multi-project builds we can define other modules.
 // Default value is project.allprojects*.idea.module.
 modules = project(':other').idea.module

 // Set resource wildcard pattern.
 // Default value is ['!?*.java', '!?*.groovy']
 wildcards += '!?*.xsd'
 }
}

Chapter 12

[331]

The following example build file shows some of the options we can use to change
the module file:

apply plugin: 'java'
apply plugin: 'idea'

configurations { extraLib }
sourceSets { api }

idea {
 module {
 // Download associated Javadoc files for dependencies.
 // Default value is false.
 downloadJavadoc = true

 // Download associated source files for dependencies.
 // Default value is true.
 downloadSources = true

 // Set which directories to exclude.
 excludeDirs += file('.settings')

 // Set specific JDK for this module, or use the value
'inherited'
 // to use project JDK. Default value is 'inherited'.
 jdkName = 'inherited'

 // Directory with the source files.
 // Default value is project.sourceSets.main.allSource
 sourceDirs += project.sourceSets.api.allSource

 // Directory with the test source files.
 // Default value is project.sourceSets.test.allSource
 testSourceDirs += project.sourceSets.api.allSource

 // Set configurations for the IntelliJ IDEA scopes.
 scopes.COMPILE.plus += configurations.extraLib
 scopes.TEST.minus += configurations.extraLib
 }
}

IDE Support

[332]

Customizing with merged hooks
With the merge hooks, we can access the model objects and manipulate them to
customize file generation. In the following table, we can see the type of argument
that is passed to the beforeMerged and whenMerged hooks:

Model Merge hook argument Description
Project org.gradle.plugins.ide.idea.

model.Project
Model object with
properties for project
file generation.

Module org.gradle.plugins.ide.idea.
model.Module

Model object with
properties for module
file generation.

The project script block has an ipr script block that we must use to define
the beforeMerged and whenMerged hooks. The module script block has the iml
configuration script block to define those hooks.

In the following example build file, we see some of the things we can do by using
the merge hooks:

apply plugin: 'java'
apply plugin: 'idea'

version = 1.0

description = 'Sample project'

repositories {
 mavenCentral()
}

dependencies {
 testCompile 'junit:junit:4.8'
}

idea {
 project {
 ipr {
 beforeMerged { iprProject ->
 iprProject.wildCards.removeAll()
 }

Chapter 12

[333]

 whenMerged { iprProject ->
 iprProject.wildCards.add '!?*.xsd'
 }
 }
 }

 module {
 iml {
 beforeMerged { imlModule ->
 imlModule.outputDir = null
 }

 whenMerged { imlModule ->
 imlModule.jdkName = '1.6'
 module.dependencies*.exported = true
 imlModule.excludeFolders.add file('.svn')
 }
 }
 }
}

Customizing with XML manipulation
At the lowest level, we can manipulate the XML before it is written to disk. For
workspace file configuration changes, this is the best way. We can also use it for
the project and module files. We must implement a closure with the withXml hook
to customize the XML structure. The closure has a single argument of type org.
gradle.api.XmlProvider. We can use the asNode() method to get a Groovy
groovy.util.Node object. This is the easiest way to manipulate the XML. The
asString() method returns a StringBuilder object and the asElement()
returns an org.w3c.dom.Element object.

In the following example build file, we make some changes to the XML for
the project, module, and workspace files:

apply plugin: 'java'
apply plugin: 'idea'

idea {
 project {
 ipr {
 withXml { xml ->
 def projectRoot = xml.asNode()

IDE Support

[334]

 projectRoot.component.find {
 it.@name == 'ProjectRootManager'
 }.@'assert-keyword' = true

 def javadoc = projectRoot.component.find {
 it.@name == 'JavadocGenerationManager'
 }
 javadoc.option.find {
 it.@name == 'OPEN_IN_BROWSER'
 }.@value = false
 }
 }
 }

 module {
 iml {
 withXml { xml ->
 def moduleRoot = xml.asNode()
 def facetManager = moduleRoot.component.find {
 it.@name == 'FacetManager'
 }
 facetManager.plus {
 facet(type: 'Spring', name: 'Spring') {
 configuration {
 fileset(id: 'fileset1', name: 'XML
Application Context') {
 file 'file://$MODULE_DIR$/src/main/
resources/applicationContext.xml'
 }
 }
 }
 }
 }
 }
 }

 workspace {
 iws {
 withXml { xml ->

Chapter 12

[335]

 def workspaceRoot = xml.asNode()
 def coverageViewManager = workspaceRoot.component.find
{
 it.@name == 'CoverageViewManager'
 }
 coverageViewManager.option.find {
 it.@name == 'myFlattenPackages'
 }.@value = 'false'
 }
 }
 }
}

Running Gradle in Eclipse
We can generate the Eclipse project files using the Eclipse plugin. We can also
import a Gradle build file in Eclipse and then execute the Gradle tasks from
within Eclipse. In this section, we see how to install the Gradle plugin in Eclipse
and also how we can use it to import a Gradle build file and execute tasks.

The Gradle plugin is part of SpringSource Tool Suite (STS). SpringSource Tool
Suite is based on Eclipse and adds support for building Spring-based applications
through already-installed plugins. We can install SprintSource Tool Suite as a
standalone IDE. If we want to re-use our existing Eclipse IDE, we can install STS
as a plugin. The plugin has an import wizard to import existing Gradle builds.
Multi-project builds are also supported by it.

The plugin keeps track of dependencies defined in the Gradle build file as
project dependencies. This means that if we change a dependency in the build
file, the Eclipse classpath will be updated with the change, so that the compiler
can use it.

To execute tasks, the plugin adds an additional view to Eclipse. From the view
we can execute tasks. The Eclipse launching framework is used to execute tasks.

If we have installed the Groovy Eclipse plugin, we get Gradle DSL support.
This means we get code completion and Javadoc tooltips in the editor when
we edit Gradle build files.

IDE Support

[336]

Installing Gradle plugin
To install the Gradle plugin, we use the update site, http://dist.springsource.
com/release/TOOLS/gradle. From the Help menu, we select Install New
Software...., we then see a new dialog window. Click on the Add... button
to add a new update site. In the dialog window that appears, we fill in the
correct values shown in the following screenshot:

Eclipse will fetch the information from the update site. In the Install dialog window,
all components are shown. We click on the Select All button and continue, as shown
in the following screenshot:

Chapter 12

[337]

We have to accept the licenses, and Eclipse downloads the plugin components.
Restart Eclipse after all the plugin components have been downloaded.

IDE Support

[338]

If we want DSL support for the Gradle build files, we must also install the Groovy
Eclipse plugin. We go to SpringSource Dashboard and select the Extension tab.
In the Find: field, we type in groovy-eclipse and select the Groovy-Eclipse option
from the search results, as shown in the following screenshot:

We click on the Install button to install the plugin into Eclipse.

Importing Gradle project
After we have installed the plugin, we can use the import wizard to import a
Gradle project. We use a very simple Java project with the following build file:

apply plugin: 'java'

version = '1.0'
group = 'sample.gradle'

description = 'Sample Java project'

repositories {
 mavenCentral()
}

Chapter 12

[339]

dependencies {
 testCompile 'junit:junit:4.8'
}

In Eclipse, we select the Import... option from the File menu. In the Import dialog
window, we type gradle in the search field. We select the Gradle Project option
before we click on the Next button, as shown in the following screenshot:

IDE Support

[340]

In the next step of the import wizard, we must specify the root folder for our Gradle
project. For a multi-project build, we should select the root folder. If we only have
a single project, we can then select the project folder. After we have selected the
folder, we must click on the Build Model button. The folder is then scanned for
information, and after the model is built, we can see our project displayed as
shown in the following screenshot:

Chapter 12

[341]

We can select the project and click on the Finish button to import the project into our
Eclipse workspace.

But before we do that, first take a closer look at the Import options. The option
Run before allows us to define Gradle tasks to be executed before the import. The
default value cleanEclipse eclipse will regenerate the Eclipse project files from the
Eclipse plugin in our Gradle build file. We don't need it for Java projects, because
the Gradle plugin in Eclipse will make sure everything works. For web or enterprise
applications with WTP support, we can still invoke the eclipse tasks.

The Run after option has the default afterEclipseImport task. This task name is a
hook for the import process. We must implement the task ourselves in the build file,
if we want to do some customization after the import wizard is finished.

With the Enable dependency management option, we instruct Eclipse to build the
dependencies based on the Gradle build file contents. The Enable DSL Support is
useful if we have also installed the Groovy-Eclipse plugin.

The Create resource filters option can be used for multi-project builds. The Gradle
plugin will create linked projects to be able to import multiple projects, but this
means a project can occur multiple times in the project view. If we enable this option,
a resource filter is created, so that we see the project displayed only once in the
project view.

Also, with multi-project build, the option Use hierarchical project names can be
used. If we enable this option, the name of the root project is also used in the project
name. Finally, if we enable the option Create workingset 'eclipse', a new working set
is created with all the projects that we import.

IDE Support

[342]

We don't want to execute any Gradle tasks before and after the import, so we must
uncheck those options. After unchecking the Run before and Run after options, we
are now ready to click on the Finish button, as shown in the following screenshot:

Chapter 12

[343]

After the import wizard is done, we can see our project in the Package Explorer,
as shown in the next screenshot:

The Gradle Dependencies node has the dependency that we have defined in
our Gradle build file. If we add new dependencies, we can update the project
by right-clicking on the project name. From the submenu, we select Gradle
and Refresh Dependencies.

Running tasks
To execute tasks, we first open the Gradle Tasks view. From the Window menu,
we select Show View and then Other.... We type gradle in the search field, to
search for the Gradle Tasks view, as shown in following screenshot:

IDE Support

[344]

We select the view and click on the OK button.

In our workspace, we now have the Gradle Tasks view. We select a project from
the Project selection list. The tasks for that project are then displayed as shown
in the following screenshot:

To execute a task, we simply have to double-click on the task name, and in the
Console view, we can see the output of the executed task.

We can also use the launch framework of Eclipse to run tasks. We must right-click
on the project and select the Gradle Build or Gradle Build... option from the Run
As option. The launch configuration is opened, and here we can configure the tasks
to be executed, as shown in following screenshot:

Chapter 12

[345]

If we have multiple tasks to execute, we can set the order in the Task execution
order section.

IDE Support

[346]

Editing build files
We have installed the Groovy-Eclipse plugin, and if we open the build.gradle file,
we get code completion support for the Gradle DSL. For example, if we type ar and
enter the key combination for code completion, we can see the option artifacts, as
shown in the following screenshot:

Running Gradle in IntelliJ IDEA
We can generate IDEA project files with the IDEA plugin in our build file. IntelliJ
IDEA has a Gradle plugin to import a Gradle project without first creating the project
files. In this section, we learn how to use the Gradle plugin with IntelliJ IDEA 11.1.

We use the same project that was used with the Eclipse Gradle plugin to import the
project into IntelliJ IDEA.

Chapter 12

[347]

Installing the plugin
The Gradle plugin can be installed through the IntelliJ IDEA plugin manager.
We need to go to IDE Settings in the Settings window, as shown in the
following screenshot:

We select the Gradle plugin to install it in the IDE. Once we have installed the
plugin, we can then import a project.

IDE Support

[348]

Importing a project
To import an existing Gradle project, we start the New project wizard. We select
the New Project... option from the File menu. IntelliJ IDEA shows a dialog window
in which we can choose the source of the new project. We select the Import project
from external model option, as shown in the following screenshot:

Chapter 12

[349]

We click on the Next button and select Gradle as external model, as shown in the
following screenshot:

IDE Support

[350]

Now we can click on the Next button, and in the following window, we must fill in
the location of the build.gradle file and the location of our Gradle installation as
shown in the following screenshot:

Chapter 12

[351]

After we have filled in the values, we click on the Next button. IntelliJ IDEA will
parse the build file and then show the determined Project structure in the following
window. We can change the properties for the project, module, and content-root
properties. In the following screenshot, we can see the properties that are set for the
project property:

IDE Support

[352]

Next, we can see the properties that are set for the module property, as shown in
the following screenshot:

Chapter 12

[353]

In the following screenshot, we can see the properties that are set for the
content-root property:

We click on the Finish button, and IntelliJ IDEA opens the new project. We can see
the project and its dependencies, as shown in the following screenshot:

IDE Support

[354]

To see the Gradle project dependency structure, we can also open the JetGradle
window. Here, we can see the differences between the IDEA module dependencies
and the Gradle dependencies. We must click on the Refresh button to use the latest
changes in the build.gradle file. For example, if we add a new compile dependency
org.slf4j:slf4j-api:1.6.4, we must click on the Refresh button to see the
changes, as shown in the following screenshot:

Notice that dependency name is in green. This means that the dependency is defined
in the Gradle build file, but not in the IntelliJ IDEA module. We right-click on the
dependency and then select Import to add the dependency to the IDEA module,
as shown in the following screenshot:

If dependencies were added to the IDEA module, but not defined in the Gradle
build file, the color of the dependency will be blue. Conflicting dependencies are
shown in red.

Chapter 12

[355]

Running tasks
To execute Gradle tasks, we use IntelliJ IDEA's run/debug configurations. From the
Run menu, select build. A pop-up menu is shown, and from here select the Edit...
option, as shown in the following screenshot:

The Edit Configuration settings dialog window is then shown. This is the Groovy
configuration dialog. In the Script parameters field, we can type the task names that
we want to execute, as shown in the following screenshot:

IDE Support

[356]

We click on the Run button to execute the tasks. After the tasks are executed, we can
see the output of the tasks in the Run window. The new configuration is added to
the list of configurations. We can choose the configuration again to re-run the tasks.

Summary
When we develop applications, we usually develop the code with an IDE. In this
chapter, we have seen how we can use the Gradle plugins in Eclipse, Eclipse WTP,
and IDEA, to generate project files for Eclipse and IntelliJ IDEA.

The plugins have a DSL to change the configuration before the files are generated.
We can also use hooks to change the model objects before and after the DSL is
applied. At the lowest level, we can use the withXml hook to alter the XML content
before the file is written to disk.

Both Eclipse and IntelliJ IDEA have plugins to import an existing Gradle project.
We can then work with the project from within the IDE. Extra dependencies or
changes are reflected in the classpath project files, so that the code can be compiled
with the IDE's compiler. We can also run Gradle tasks from within the IDE, so we
don't have to leave our favorite IDE if we want to use Gradle.

In this book, we have seen the power of Gradle as a build tool. The Gradle syntax is
very consistent and compact. If we know the basics, we can accomplish many things.
We learned how to add functionality to a build file, with tasks. We have seen how
we can use Gradle in Java, Groovy, and Scala projects. We saw Gradle's features
for working with multi-projects. We have learned how to create custom tasks and
plugins to enable the re-use of build logic across projects. After reading this book,
we will be able to use Gradle in our software development. By using Gradle, we
can have great flexibility in our projects and still rely on sold convention-over-
configuration defaults. We can start simple and gradually expand the build script
with more functionality. With this book, we should get started quickly and have
successful Gradle implementation in our projects.

Index
Symbols
--daemon command-line option 22
--debug command-line option 78
--debug option 80
--exclude-tasks (-x) command-line

option 50
--full-stracktrace option 19
.gradle extension 24
--gui command-line option 22
@Input 242
@InputDirectory 242
@InputFile 242
@InputFiles 242
@Nested 243
--no-daemon command-line option 21
@Optional 243
@OuputDirectory 243
@OutputDirectories 243
@OutputFile 242
@OutputFiles 243
--profile option 22
--quiet command-line option 12
--stacktrace option 19
<< syntax 12

A
Action interface

used, for action defining 32
additionalRuntimeJars property 197
Add Task button 294, 302
afterEvaluate() method 183
allGroovy property 203
allJava property 93
allScala property 210

allSource property 93
Another Neat Tool. See ANT
ANT 129
apiClasses task 106
apiJar task 106
apply() method 195, 251
archiveName property 68
archives

assembling 105, 106
archivesBaseName property 102
artifacts

conditional signing, configuring 167
Maven repository, uploading 159-162
multiple artifacts 162
publishing 157, 158
signature files, publishing 165, 166
signing 163, 165

artifacts link 306
asElement() method 318
asNode() method 318, 333
assemble task 103
asString() method 318
Atlassian Bamboo

about 289
build plan, defining 290-297
build plan, running 298-306
using 290

B
baseDir property 232
beforeMerged hook 315
binaryDirs property 232
Build Log tab page 288
build() method 246
Build Model button 340

[358]

build script
about 29, 30
writing 29

buildSrc directory 255

C
call() method 56
captureStandardError()method 81
captureStandardOutput() 81
Checkstyle plugin

about 213
using 213-217

checkstyle property 217
classes task 89
classpath() method 168
Closures 32
Clover coverage 232
cloverReportPath property 232
Cobertura coverage 232
coberturaReportPath property 232
codenarc.ignoreFailures property 230
CodeNarc plugin

about 229
using 229, 230

codenarc.toolVersion property 229
command-line options

about 17, 18
build file, modifying 19
directory, modifying 19
logging options 18
profiling 22
tasks, running without execution 20, 22

Command Line tab 25
compileClasspath property 97
compression property 69
configFile property 218, 229
configProperties property 218
Configure Tasks button 293
convention properties

archivesBaseName 102
manifest 102
metaInf 102
sourceCompatibility 102
sourceSets 102
targetCompatibility 102

copy spec 64

Create Definition button 300
createGradleWrapper task 83
create() method 251
custom plugin

about 249
creating 249
creating, in build file 250, 252

customProperty 71
custom task

about 237
creating, in build file 238-240
incremental build support, using 240-243

D
DAG 20
date property 232
default tasks

setting 37
default tasks, Gradle tasks 12, 14, 15
dependencies

about 34, 35
client module dependencies, using 125
client module dependency 119
configuration dependencies, accessing 126
defining 118
defining, via closures 36
defining, via tasks 36
dependency configurations, using as files

130
dynamic versions, setting 127, 128
external module dependencies, using 119-

123
external module dependency 118
file dependencies, using 124
file dependency 119
Gradle API dependency 119
Gradle dependencies, using 125
Groovy dependencies, using 125
Local Groovy dependency 119
optional ANT tasks, adding 129, 130
project dependencies, using 124
Project dependency 118
version conflicts, resolving 128

dependencyCacheDirName property 101
dependency configuration

about 109-112

[359]

archives 112
compile 112
default 112
runtime 112
testCompile 112

dependency management 109
dependsOn method 34
dependsOn property 34
description property 232
destinationDir property 68
Directed Acyclic Graph. See DAG
directory properties

dependencyCacheDirName 101
distDirName 101
docsDirName 101
libsDirName 101
testReportDirName 101
testResultsDirName 101
working with 100, 101

distDirName property 101
distributionUrl property 84
distZip task 154
docsDirName property 101
documentation

creating 104, 105
doFirst method 31
Domain Specific Language. See DSL
DSL 311
dynamicAnalysis property 233

E
EAR 167
EAR file

creating 170, 171
Ear plugin, using 171, 172

Eclipse plugin
about 307-311
configuration, merging 319
customizing, DSL used 312, 314
generated files, customizing 311
Gradle plugin, running 335
WTP, configuring 319

Edit Configuration settings dialog
window 355

Edit File 24

Enable dependency management
option 341

enhanced task 237
Enterprise Archive. See EAR
evaluationDependsOn() method 186
events() method 147
excludeGroups option 143
exclude() method 121, 146
exists() method 57
expand() method 67

F
Favorites tab 24
file generation, IntelliJ IDEA plugin

customizing 329
customizing, DSL used 329, 331
customizing, with merged hooks 332, 333
customizing, with XML manipulation

333, 335
file() method 56, 58
files

archiving 68, 69
copying 64, 65
file collections, using 58, 60
locating 55-57
renaming 65-67
trees, working with 62, 63
working with 55

fileTree() method 62
Filter button 24
filter() method 63, 66
findbugs() method 225
FindBugs plugin

about 224
using 224-227

first build script
writing 11

from() method 64, 130, 209

G
generated files customization

configuration, merging 319
DSL, using 312, 314
merge hooks, using 315, 317
steps 311
XML manipulation, using 318, 319

[360]

getLogger() method 79
getWelcomeMessage() method 134, 139
Gradle

about 7, 199
default tasks 12-15
enhanced task 237
features 8
first build script, writing 11, 12
installing 10
log levels 75
multiple tasks, executing 16
plugins, using 85
starting with 9
supported languages 199
task name abbreviation 15

gradle command 20
Gradle, features

Ant tasks support 8
convention-over-configuration 8
declarative builds 8
free 9
Gradle wrapper 9
incremental builds 8
Maven repositories 8
multi-project builds 9

Gradle Java plugin
convention properties 102
directory properties 101
starting with 86, 87
using 85-92

Gradle plugin
installing 336-338
running, in Eclipse plugin 335
running, in IntelliJ IDEA 346

Gradle plugin, running in Eclipse
build files, editing 346
project, importing 338-343
tasks, running 343-345

Gradle plugin, running in IntelliJ IDEA
Gradle plugin, installing 347
project, importing 348-354
tasks, running 355, 356

Gradle Project option 339
Gradle script 55
Gradle user interface

about 22, 24
Command Line tab 25

Favorites tab 24
Setup tab 25, 26
Task Tree tab 24

gradleVersion property 83
Gradle wrapper

about 82
customizing 84
wrapper scripts, creating 83

Groovydoc tool 205
Groovy-Eclipse option 338
Groovy plugin

about 199
documentation, creating 205
source set properties 203
using 199-204

groovy property 203
groovy.srcDirs property 203

I
IDE 307
ignoreFailures property 222
importSource property 233
includeGroups option 143
incremental build support 51
inputs property 53
installApp task 154
Integrated Development Environment. See

IDE
IntelliJ IDEA

Gradle plugin, installing 347
Gradle plugin, running 346

IntelliJ IDEA plugin
about 327
file generation, customizing 329
using 327, 328

into() method 64
isDirectory() method 57
isSatisfiedBy method 47

J
Java applications

distributable application archive,
creating 154-156

running 149, 150
running, application plugin used 153, 154

[361]

running, as task 151
running, from project 150

Java Development Kit. See JDK
Java Development Tools. See JDT
javadocAnnotations option 143
javadoc task 105
Java Enterprise Edition applications

about 167
EAR file, creating 170, 171
WAR file, creating 167-169

javaexec() method 150
Java multi-project builds

Jetty plugin, using 194-197
partial builds, using 191-194
working with 186-190

Java plugin. See Gradle Java plugin
java property 93, 233
java.srcDirs property 93
Java Virtual Machine. See JVM
JDepend plugin

about 227
using 227, 228

JDK 9
JDT 308
Jenkins

about 264
artifacts, configuring 272-275
Gradle plugin, adding 265, 266
Gradle versions, adding 275- 278
installing 265
job, configuring 266-270
job, running 270, 271
test results, configuring 272-275

JetBrains IntelliJ IDEA 307
JetBrains TeamCity

about 279
project, creating 279-286
project, running 286-289
using 279

jettyRun task 195
jettyRunWar task 195
jettyStop task 195, 197
JVM 8

K
key property 233

L
language property 233
layout() method 117
lib dependencies 188
lib() method 170
libraries property 233
libsDirName property 101
listeners option 143
logging

about 75-79
output, controlling 80, 81

log() method 76

M
main() method 149
manifest property 102
matching() method 63
mavenCentral() method 113
Maven POM (Project Object Model) 159
metaInf property 102
module() method 125
multiple tasks

executing 16
multi-project builds

configuration dependencies, defining 185,
186

flat layout, using 178
projects, defining 179-181
projects, filtering 182-184
task dependencies, defining 184, 185
tasks, executing by project path 177
working with 175, 176

N
name property 93, 233
New project wizard 348

O
onlyIf method 47, 49
output.classesDir property 93
output property 93
output.resourcesDir property 93

[362]

P
parallel option 143
pathVariables() method 312
PGP 163
plugin

creating, in project source directory 252, 253
creating, in standalone project 255-257
testing 254

PMD plugin
about 221
using 221-224

Pretty Good Privacy. See PGP
println() method 80
project 29
project() method 124, 176, 232
project properties

about 70
adding, via environment variables 73
custom properties, defining in script 71
defining, external file used 74
defining, via system properties 73
passing, via command line 72

project source directory
plugin, creating 252, 253
task, creating 243-245
tests, writing 246, 247

properties, Scala plugin
allScala 210
scala 210
scala.srcDirs 210

property
baseDir 232
binaryDirs 232
cloverReportPath 232
coberturaReportPath 232
convention property 102
date 232
description 232
directory property 101
dynamicAnalysis 233
importSource 233
java 233
key 233
language 233
libraries 233
name 233

propertyProcessors 234
skip 234
skipDesignAnalysis 234
sourceDirs 234
sourceEncoding 234
sourceExclusions 234
testDirs 234
testReportPath 234
version 234
workDir 234
working with 100-104

propertyProcessors property 234
protocols

file 161
ftp 161
http 160
scp 161
ssh 160
ssh-external 160
webdav 161

R
readPassword() method 129
ReadWelcomeMessage interface 96
Refresh button 354
rename() method 65
reportsDir property 220
reports() method 230
repositories

about 112
Flat directory repository 113
Ivy repositories, adding 115-117
Ivy repository 113
local directory repository, adding 118
Maven central repository 113
Maven local repository 113
Maven repositories, adding 113-115
Maven repository 113

resolutionStrategy property 128
resources() method 116
resources property 93
resources.srcDirs property 93
ruleSetFiles() method 223
ruleSetFiles property 223
rules() method 223
Run Build button 287

[363]

S
sample project

creating 259-264
SampleService class 190
scaladoc task 211
Scala plugin

about 206
documentation, creating 211, 212
properties 210
using 207-211

scala property 210
scala.srcDirs property 210
scanForTestClasses property 146
script

building, Groovy used 33
scriptFile property 84
Servlet API 187
Setup tab 25, 26
Simple Logging Facade for Java. See SLF4J
singleFile property 61
skipDesignAnalysis property 234
skip property 234
SLF4J 75
Sonar plugin

about 231
using 231-234

source code
Checkstyle 213
CodeNarc 229
FindBugs 224
JDepend 227
PMD 221
Sonar 231

sourceCompatibility property 102
sourceDirs property 234
sourceEncoding property 234
sourceExclusions property 234
source set

about 92
allJava property 93
allSource property 93
custom configuration 98-100
java property 93
java.srcDirs property 93
name property 93
new source set, creating 95, 97

output.classesDir property 93
output property 93
output.resourcesDir property 93
resources property 93
resources.srcDirs property 93
working with 92, 94

source set properties, Groovy plugin
allGroovy 203
groovy 203
groovy.srcDirs 203

sourceSets property 94, 95, 102
SpringSource Tool Suite. See STS
standalone project

plugin, creating 255-257
task, creating 247-249

startScripts task 154
STS 335
suiteName option 143
suiteXmlBuilder option 143
suiteXmlWriter option 143

T
targetCompatibility property 102
task

about 29
accessing, as project properties 44, 45
adding, ways 41, 42
additional properties, adding 45
command line, skipping from 50
common pitfalls, avoiding 45, 46
creating, in project source directory 243-245
creating, in standalone project 247-249
disabling 49
enabling 49
onlyIf predicates, using 46, 47
organizing 38
rules, using 43, 44
skipping 46
skipping, by throwing StopExecutionExcep-

tion 48
up-to-date task, skipping 51, 53

task groups 40
task name abbreviation, Gradle tasks 15
task organization

about 38, 40
description, adding 40

[364]

task groups, creating 40
task rules

using 43, 44
tasks

actions defining, Action interface used 32
defining 30-32

Task Tree tab 24
testDirs property 234
testing

about 133-139
Gradle build script 135-138
TestNG, using 140-144
test process, configuring 144, 145

testName option 143
TestNG

using, for testing 140-144
test output

logging 147
test process

configuring 144, 145
testReportDirName property 101
testReportPath property 234
test reports

generating 149
testResources option 143
testResultsDirName property 101
tests

determining 146
threadCount option 143
Toggle filter button 24
toolVersion property 217, 227

U
uploadArchives task 256
Use Custom Gradle Executor 26
useDefaultListeners option 143
useJUnit() method 140
useTestNG() method 141

V
version property 234
visit() method 63

W
WAR 167
WAR file

creating 167-169
War plugin, using 169

war task 169
Web application Archive. See WAR
Web Tools Platform. See WTP
whenMerged hook 315
withGlobalProperties() method 235
withProjectProperties() method 235
withXml hook 326
workDir property 234
WTP 319
WTP configuration

about 319-322
file generation, customizing 323-326

Thank you for buying
Gradle Effective Implementation Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

Apache Maven 3 Cookbook
ISBN: 978-1-84951-244-2 Paperback: 244 pages

Over 50 recipes towards optimal Java software
engineering with Maven 3

1. Grasp the fundamentals and extend Apache
Maven 3 to meet your needs

2. Implement engineering practices in your
application development process with Apache
Maven

3. Collaboration techniques for Agile teams with
Apache Maven

4. Use Apache Maven with Java, Enterprise
Frameworks, and various other cutting-edge
technologies

Java 7 New Features Cookbook
ISBN: 978-1-84968-562-7 Paperback: 384 pages

Over 100 comprehensive recipes to get you
up-to-speed with all the exciting new features of Java 7

1. Comprehensive coverage of the new features of
Java 7 organized around easy-to-follow recipes

2. Covers exciting features such as the
try-with-resources block, the monitoring
of directory events, asynchronous IO and
new GUI enhancements, and more

3. A learn-by-example based approach that
focuses on key concepts to provide the
foundation to solve real world problems

Please check www.PacktPub.com for information on our titles

Java 7 JAX-WS Web Services
ISBN: 978-1-84968-720-1 Paperback: 64 pages

A practical, focused mini book for creating Web
Services in Java 7

1. Develop Java 7 JAX-WS web services using the
NetBeans IDE and Oracle GlassFish server

2. End-to-end application which makes use of the
new clientjar option in JAX-WS wsimport tool

3. Packed with ample screenshots and practical
instructions

Java EE 6 Cookbook for
Securing, Tuning, and Extending
Enterprise Applications
ISBN: 978-1-84968-316-6 Paperback: 356 pages

Packed with comprehensive recipes to secure, tune,
and extend your Java EE applications

1. Secure your Java applications using Java EE
built-in features as well as the well-known
Spring Security framework

2. Utilize related recipes for testing various Java
EE technologies including JPA, EJB, JSF, and
Web services

3. Explore various ways to extend a Java EE
environment with the use of additional
dynamic languages as well as frameworks

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgement
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Starting with Gradle
	Introducing Gradle
	Declarative builds and convention over configuration
	Support for Ant tasks and Maven repositories
	Incremental builds
	Multi-project builds
	Gradle wrapper
	Free and open source

	Getting started
	Installing Gradle

	Writing our first build script
	Default Gradle tasks
	Task name abbreviation
	Executing multiple tasks
	Command-line options
	Logging options
	Changing the build file and directory
	Running tasks without execution
	Gradle daemon
	Profiling

	Understanding the Gradle user interface
	Task Tree
	Favorites
	Command Line
	Setup

	Summary

	Chapter 2: Creating Gradle Build Scripts
	Writing a build script
	Defining tasks
	Defining actions with the Action interface

	Build scripts are Groovy code
	Defining dependencies between tasks
	Defining dependencies via tasks
	Defining dependencies via closures

	Setting default tasks
	Organizing tasks
	Adding a description to tasks
	Grouping tasks together

	Adding tasks in other ways
	Using task rules

	Accessing tasks as project properties
	Adding additional properties to tasks
	Avoiding common pitfalls
	Skipping tasks
	Using onlyIf predicates
	Skipping tasks by throwing StopExecutionException
	Enabling and disabling tasks
	Skipping from the command line
	Skipping tasks that are up-to-date

	Summary

	Chapter 3: Working with Gradle Build Scripts
	Working with files
	Locating files
	Using file collections
	Working with file trees
	Copying files
	Renaming files
	Filtering files

	Archiving files

	Project properties
	Defining custom properties in script
	Passing properties via the command line
	Defining properties via system properties
	Adding properties via environment variables
	Defining properties using an external file

	Using logging
	Controlling output

	Using the Gradle wrapper
	Creating wrapper scripts
	Customizing the Gradle wrapper

	Summary

	Chapter 4: Using Gradle for Java Projects
	Using plugins
	Getting started
	Using the Java plugin
	Working with source sets
	Creating a new source set
	Custom configuration

	Working with properties
	Creating documentation
	Assembling archives
	Summary

	Chapter 5: Dependency Management
	Dependency configuration
	Repositories
	Adding Maven repositories
	Adding Ivy repositories
	Adding a local directory repository

	Defining dependencies
	Using external module dependencies
	Using project dependencies
	Using file dependencies
	Using client module dependencies
	Using Gradle and Groovy dependencies
	Accessing configuration dependencies
	Setting dynamic versions
	Resolving version conflicts
	Adding optional ANT tasks
	Using dependency configurations as files

	Summary

	Chapter 6: Testing, Building, and Publishing Artifacts
	Testing
	Using TestNG for testing
	Configuring the test process
	Determining tests
	Logging test output
	Generating test reports

	Running Java applications
	Running an application from a project
	Running an application as task
	Running an application with the application plugin
	Creating a distributable application archive

	Publishing artifacts
	Uploading to a Maven repository
	Multiple artifacts
	Signing artifacts
	Publishing signature files
	Configuring conditional signing

	Packaging Java Enterprise Edition applications
	Creating a WAR file
	Using the War plugin

	Creating an EAR file
	Using the Ear plugin

	Summary

	Chapter 7: Multi-project Builds
	Working with multi-project builds
	Executing tasks by project path
	Using a flat layout
	Defining projects
	Filtering projects
	Defining task dependencies between projects
	Defining configuration dependencies

	Working with Java multi-project builds
	Using partial builds

	Using the Jetty plugin
	Summary

	Chapter 8: Mixed Languages
	Using the Groovy plugin
	Creating documentation with the Groovy plugin

	Using the Scala plugin
	Creating documentation with the Scala plugin

	Summary

	Chapter 9: Maintaining Code Quality
	Using the Checkstyle plugin
	Using the PMD plugin
	Using the FindBugs plugin
	Using the JDepend plugin
	Using the CodeNarc plugin
	Using the Sonar plugin
	Summary

	Chapter 10: Writing Custom Tasks and Plugins
	Creating a custom task
	Creating a custom task in the build file
	Using incremental build support

	Creating a task in the project source directory
	Writing tests

	Creating a task in a standalone project
	Creating a custom plugin
	Creating a plugin in the build file

	Creating a plugin in the project source directory
	Testing a plugin

	Creating a plugin in a standalone project
	Summary

	Chapter 11: Using Gradle with Continuous Integration
	Creating a sample project
	Using Jenkins
	Adding the Gradle plugin
	Configuring Jenkins job
	Running the job
	Configuring artifacts and test results
	Adding Gradle versions

	Using JetBrains TeamCity
	Creating a project
	Running the project

	Using Atlassian Bamboo
	Defining a build plan
	Running the build plan

	Summary

	Chapter 12: IDE Support
	Using the Eclipse plugin
	Customizing generated files
	Customizing using DSL
	Customizing with merge hooks
	Customizing with XML manipulation

	Merging configuration
	Configuring WTP
	Customizing file generation

	Using the IntelliJ IDEA plugin
	Customizing file generation
	Customizing using DSL
	Customizing with merged hooks
	Customizing with XML manipulation

	Running Gradle in Eclipse
	Installing Gradle plugin
	Importing Gradle project
	Running tasks
	Editing build files

	Running Gradle in IntelliJ IDEA
	Installing the plugin
	Importing a project
	Running tasks

	Summary

	Index

